module Data.Optional ( T(Nil, Cons), (?:), fromEmpty, fromNonEmpty, ) where import qualified Data.NonEmpty.Class as C import qualified Data.NonEmpty as NonEmpty import qualified Data.Empty as Empty import Data.NonEmptyPrivate (Aux(Aux), snoc) import qualified Data.Traversable as Trav import qualified Data.Foldable as Fold import Control.Applicative (pure, liftA2, ) import qualified Test.QuickCheck as QC import Control.Monad (return, ) import Data.Functor (fmap, ) import Data.Function (($), (.), ) import Data.Ord (Ord, Ordering(GT), (>), ) import Data.Tuple.HT (mapSnd, ) import qualified Prelude as P import Prelude (Eq, uncurry, ) data T f a = Nil | Cons a (f a) deriving (Eq, Ord) fromEmpty :: Empty.T a -> T f a fromEmpty Empty.Cons = Nil fromNonEmpty :: NonEmpty.T f a -> T f a fromNonEmpty (NonEmpty.Cons x xs) = Cons x xs instance (C.Show f, P.Show a) => P.Show (T f a) where showsPrec = C.showsPrec instance (C.Show f) => C.Show (T f) where showsPrec _ Nil = P.showString "Nil" showsPrec p (Cons x xs) = P.showParen (p>5) $ P.showsPrec 6 x . P.showString "?:" . C.showsPrec 5 xs infixr 5 ?: (?:) :: a -> f a -> T f a (?:) = Cons instance P.Functor f => P.Functor (T f) where fmap _ Nil = Nil fmap f (Cons x xs) = Cons (f x) (fmap f xs) instance (Fold.Foldable f) => Fold.Foldable (T f) where foldr _ y Nil = y foldr f y (Cons x xs) = f x (Fold.foldr f y xs) instance (Trav.Traversable f) => Trav.Traversable (T f) where sequenceA Nil = pure Nil sequenceA (Cons x xs) = liftA2 Cons x (Trav.sequenceA xs) instance (C.Arbitrary f, QC.Arbitrary a) => QC.Arbitrary (T f a) where arbitrary = QC.oneof [return Nil, liftA2 Cons QC.arbitrary C.arbitrary] shrink Nil = [] shrink (Cons x xs) = P.map (\(y, Aux ys) -> Cons y ys) (QC.shrink (x, Aux xs)) instance C.Empty (T f) where empty = Nil instance (C.Cons f, C.Empty f) => C.Cons (T f) where cons x Nil = Cons x C.empty cons x0 (Cons x1 xs) = Cons x0 $ C.cons x1 xs instance (C.Repeat f) => C.Repeat (T f) where repeat x = Cons x $ C.repeat x instance C.Zip f => C.Zip (T f) where zipWith f (Cons x xs) (Cons y ys) = Cons (f x y) (C.zipWith f xs ys) zipWith _ _ _ = Nil instance (Trav.Traversable f, C.Reverse f) => C.Reverse (T f) where reverse Nil = Nil reverse (Cons x xs) = fromNonEmpty (snoc (C.reverse xs) x) instance (NonEmpty.Insert f, C.Sort f) => C.Sort (T f) where sort Nil = Nil sort (Cons x xs) = fromNonEmpty $ NonEmpty.insert x $ C.sort xs instance (NonEmpty.InsertBy f, C.SortBy f) => C.SortBy (T f) where sortBy _ Nil = Nil sortBy f (Cons x xs) = fromNonEmpty $ NonEmpty.insertBy f x $ C.sortBy f xs instance (NonEmpty.Insert f) => NonEmpty.Insert (T f) where insert y xt = uncurry NonEmpty.Cons $ case xt of Nil -> (y, xt) Cons x xs -> case P.compare y x of GT -> (x, fromNonEmpty $ NonEmpty.insert y xs) _ -> (y, xt) instance (NonEmpty.InsertBy f) => NonEmpty.InsertBy (T f) where insertBy f y xt = uncurry NonEmpty.Cons $ case xt of Nil -> (y, xt) Cons x xs -> case f y x of GT -> (x, fromNonEmpty $ NonEmpty.insertBy f y xs) _ -> (y, xt) instance NonEmpty.RemoveEach f => NonEmpty.RemoveEach (T f) where removeEach (NonEmpty.Cons x Nil) = NonEmpty.Cons (x, Nil) Nil removeEach (NonEmpty.Cons x0 xs0@(Cons x1 xs1)) = NonEmpty.Cons (x0, xs0) $ fmap (mapSnd (x0 ?:)) $ fromNonEmpty $ NonEmpty.removeEach $ NonEmpty.Cons x1 xs1 instance NonEmpty.Tails f => NonEmpty.Tails (T f) where tails xt = NonEmpty.force $ case xt of Nil -> NonEmpty.Cons C.empty Nil Cons x xs -> case NonEmpty.tails xs of xss -> NonEmpty.Cons (C.cons x $ NonEmpty.head xss) (fromNonEmpty xss)