{- | Module, carrying logic of @UNPACK@ instruction. This is nearly symmetric to adjacent Pack.hs module. When implementing this the following sources were used: * https://pastebin.com/8gfXaRvp * https://gitlab.com/tezos/tezos/blob/master/src/proto_alpha/lib_protocol/script_ir_translator.ml#L2501 * https://github.com/tezbridge/tezbridge-crypto/blob/master/src/PsddFKi3/codec.js#L513 -} module Michelson.Interpret.Unpack ( UnpackError (..) , unpackValue , unpackValue' ) where import Prelude hiding (EQ, Ordering(..), get) import Control.Monad.Except (throwError) import Data.Binary (Get) import qualified Data.Binary.Get as Get import qualified Data.Bits as Bits import qualified Data.ByteString as BS import qualified Data.ByteString.Lazy as LBS import Data.Constraint (Dict(..)) import Data.Default (def) import qualified Data.Kind as Kind import qualified Data.List as List import qualified Data.Map as Map import qualified Data.Set as Set import Data.Singletons (SingI(..)) import Data.Typeable ((:~:)(..)) import Fmt (Buildable, build, fmt, hexF, pretty, (+|), (+||), (|+), (||+)) import Text.Hex (encodeHex) import Michelson.Text import Michelson.TypeCheck (HST(..), SomeHST(..), SomeInstr(..), SomeInstrOut(..), TCError(..), TypeCheckEnv(..)) import Michelson.TypeCheck.Helpers (ensureDistinctAsc, eqHST1) import Michelson.TypeCheck.Instr (typeCheckList) import Michelson.Typed (RemFail(..), Sing(..), starNotes) import qualified Michelson.Typed as T import Michelson.Typed.EntryPoints import Michelson.Typed.Scope (BigMapPresence(..), ContractPresence(..), OpPresence(..), UnpackedValScope, bigMapAbsense, checkBigMapPresence, checkContractTypePresence, checkOpPresence, contractTypeAbsense, opAbsense) import Michelson.Untyped import Tezos.Address (Address(..), ContractHash(..), parseAddress) import Tezos.Core import Tezos.Crypto (KeyHash(..), KeyHashTag(..), PublicKey(..), keyHashLengthBytes, mkSignature, parseKeyHash, parsePublicKey, parseSignature, signatureLengthBytes) import qualified Tezos.Crypto.Ed25519 as Ed25519 import qualified Tezos.Crypto.P256 as P256 import qualified Tezos.Crypto.Secp256k1 as Secp256k1 ---------------------------------------------------------------------------- -- Helpers ---------------------------------------------------------------------------- -- | Any decoding error. newtype UnpackError = UnpackError { unUnpackError :: Text } deriving (Show, Eq) instance Buildable UnpackError where build (UnpackError msg) = build msg instance Exception UnpackError where displayException = pretty -- | Alias for label attaching. (?) :: Get a -> String -> Get a (?) = flip Get.label infix 0 ? -- | Get a bytestring of the given length leaving no references to the -- original data in serialized form. getByteStringCopy :: Int -> Get ByteString getByteStringCopy = fmap BS.copy . Get.getByteString -- | Read a byte and match it against given value. expectTag :: String -> Word8 -> Get () expectTag desc t = Get.label desc $ do t' <- Get.getWord8 unless (t == t') $ fail . fmt $ "Unexpected tag value (expected 0x" +| hexF t |+ ", but got 0x" +| hexF t' |+ ")" -- | Fail with "unknown tag" error. unknownTag :: String -> Word8 -> Get a unknownTag desc tag = fail . fmt $ "Unknown " <> build desc <> " tag: 0x" <> hexF tag -- | Read a byte describing the primitive going further and match it against -- expected tag in the given conditions. -- -- Aside of context description, you have to specify number of arguments which -- given instruction accepts when written in Michelson. For instance, @PUSH@ -- accepts two arguments - type and value. expectDescTag :: HasCallStack => String -> Word16 -> Get () expectDescTag desc argsNum = Get.label desc $ do tag <- Get.getWord8 unless (tag == expected) $ fail . fmt $ "Unexpected preliminary tag: 0x" <> hexF tag where expected = case argsNum of 0 -> 0x03 1 -> 0x05 2 -> 0x07 3 -> 0x08 _ -> error "Bad arguments num" -- Intermediate values of tag are also used and designate that annotations -- are also attached to the packed data. But they are never produced by -- @PACK@, neither @UNPACK@ seem to expect them, so for now we pretend -- that annotations do not exist. ensureEnd :: Get () ensureEnd = unlessM Get.isEmpty $ do remainder <- Get.getRemainingLazyByteString fail $ "Expected end of entry, unconsumed bytes \ \(" +| length remainder |+ "): " +|| encodeHex (LBS.toStrict remainder) ||+ "" -- | Like 'many', but doesn't backtrack if next entry failed to parse -- yet there are some bytes to consume ahead. -- -- This function exists primarily for better error messages. manyForced :: Get a -> Get [a] manyForced decode = do emp <- Get.isEmpty if emp then return [] else (:) <$> decode <*> manyForced decode -- | Describes how 'decodeWithTag' should decode tag-dependent data. -- We expect bytes of such structure: 'tdTag' followed by a bytestring -- of length 'tdLength'. This bytestring will be passed to 'tdConstructor'. data TaggedDecoder a where TaggedDecoder :: Buildable err => { tdTag :: !Word8 , tdLength :: !Int , tdConstructor :: !(ByteString -> Either err a) } -> TaggedDecoder a -- Common decoder for the case when packed data starts with a tag (1 -- byte) that specifies how to decode remaining data. -- Usually in this case data is packed as bytes, -- so the 'Int' argument passed here is the length of that bytestring. -- See 'decodeAsBytes'. -- Note that it differs from 'tdLength' because 'Int' argument -- includes tag byte while 'tdLength' does not. decodeWithTag :: String -> [TaggedDecoder a] -> Int -> Get a decodeWithTag what decoders len = decodeWithTagSimple what . map (\td -> (tdTag td, tdToGet td)) $ decoders where tdToGet :: TaggedDecoder a -> Get a tdToGet TaggedDecoder {..} -- 1 byte here is used for tag. | tdLength + 1 /= len = fail $ "Wrong length of " +| what |+ ": " +| len |+ "" | otherwise = do bs <- getByteStringCopy tdLength case tdConstructor bs of Left err -> fail $ "Wrong " +| what |+ ": " +| err |+ "" Right res -> pure res decodeWithTagSimple :: String -> [(Word8, Get a)] -> Get a decodeWithTagSimple what decoders = Get.label what $ do tag <- Get.label (what <> " tag") Get.getWord8 -- Number of decoders is usually small, so linear runtime lookup should be ok. case List.find ((tag ==) . fst) decoders of Nothing -> unknownTag what tag Just (_, decoder) -> decoder ---------------------------------------------------------------------------- -- Michelson serialisation ---------------------------------------------------------------------------- {- Implementation notes: * We need to know which exact type we unpack to. For instance, serialized signatures are indistinguishable from plain serialized bytes, so if we want to return "Value" (typed or untyped), we need to know currently expected type. The reference implementation does the same. * It occured to be easier to decode to typed values and untyped instructions. When decoding lambda, we type check given instruction, and when decoding @PUSH@ call we untype decoded value. One may say that this gives unreasonable performance overhead, but with the current definition of "Value" types (typed and untyped) we cannot avoid it anyway, because when deserializing bytearray-like data (keys, signatures, ...), we have to convert raw bytes to human-readable 'Text' and later parse them to bytes back at type check stage. We console ourselves that lambdas are rarely packed. -} -- | Deserialize bytes into the given value. -- Suitable for @UNPACK@ operation only. unpackValue :: (UnpackedValScope t) => LByteString -> Either UnpackError (T.Value t) unpackValue bs = case Get.runGetOrFail unpackDecoder bs of Left (_remainder, _offset, err) -> Left . UnpackError $ toText err Right (_remainder, _offset, res) -> Right res -- | Like 'unpackValue', for strict byte array. unpackValue' :: (UnpackedValScope t) => ByteString -> Either UnpackError (T.Value t) unpackValue' = unpackValue . LBS.fromStrict -- | Overall value decoder we use in @UNPACK@. unpackDecoder :: (UnpackedValScope t) => Get (T.Value t) unpackDecoder = expectTag "Packed data start" 0x05 *> decodeValue <* ensureEnd decodeValue :: forall t. (HasCallStack, UnpackedValScope t) => Get (T.Value t) decodeValue = Get.label "Value" $ case sing @t of STc _ -> T.VC <$> decodeCValue STKey -> T.VKey <$> asum [ decodeAsBytes $ decodeWithTag "key" [ TaggedDecoder 0x00 Ed25519.publicKeyLengthBytes (fmap PublicKeyEd25519 . Ed25519.mkPublicKey) , TaggedDecoder 0x01 Secp256k1.publicKeyLengthBytes (fmap PublicKeySecp256k1 . Secp256k1.mkPublicKey) , TaggedDecoder 0x02 P256.publicKeyLengthBytes (fmap PublicKeyP256 . P256.mkPublicKey) ] , decodeAsString parsePublicKey ] STUnit -> do expectDescTag "Unit" 0 expectTag "Unit" 0x0B return T.VUnit STSignature -> T.VSignature <$> asum [ decodeAsBytes $ \_len -> do -- TODO [TM-329]: ignoring length is bad bs <- getByteStringCopy signatureLengthBytes case mkSignature bs of -- We expect it to succeed because the length is -- exactly 'signatureLengthBytes'. Nothing -> error "mkSignature failed" Just s -> pure s , decodeAsString parseSignature ] STChainId -> asum [ decodeAsBytes $ \_len -> do -- TODO [TM-329]: ignoring length is bad bs <- getByteStringCopy chainIdLength case mkChainId bs of Nothing -> fail $ "Wrong chain id format" Just s -> pure (T.VChainId s) , T.VChainId <$> decodeAsString parseChainId ] STOption _ -> do Get.getByteString 2 >>= \case "\x03\x06" -> pure (T.VOption Nothing) "\x05\x09" -> T.VOption . Just <$> decodeValue other -> fail $ "Unknown option tag: " <> show other STList _ -> do decodeAsList $ T.VList <$> manyForced decodeValue STSet _ -> do decodeAsList $ do vals <- manyForced decodeCValue either (fail . toString) pure $ T.VSet . Set.fromDistinctAscList <$> ensureDistinctAsc id vals STPair lt _ -> case (checkOpPresence lt, checkBigMapPresence lt, checkContractTypePresence lt) of (OpAbsent, BigMapAbsent, ContractAbsent) -> do expectDescTag "Pair" 2 expectTag "Pair" 0x07 T.VPair ... (,) <$> decodeValue <*> decodeValue STOr lt _ -> case (checkOpPresence lt, checkBigMapPresence lt, checkContractTypePresence lt) of (OpAbsent, BigMapAbsent, ContractAbsent) -> do expectDescTag "Or" 1 Get.getWord8 >>= \case 0x05 -> T.VOr . Left <$> decodeValue 0x08 -> T.VOr . Right <$> decodeValue other -> unknownTag "or constructor" other STLambda _ _ -> do uinstr <- decodeOps T.VLam <$> decodeTypeCheckLam uinstr STMap _ _ -> do T.VMap <$> decodeMap decodeCValue :: forall ct. SingI ct => Get (T.CValue ct) decodeCValue = case sing @ct of SCInt -> do expectTag "Int" 0x00 T.CvInt <$> decodeInt SCNat -> do expectTag "Nat" 0x00 T.CvNat <$> decodeInt SCString -> do expectTag "String" 0x01 T.CvString <$> decodeString SCBytes -> do expectTag "Bytes" 0x0a T.CvBytes <$> decodeBytes SCMutez -> do expectTag "Mutez" 0x00 mmutez <- mkMutez <$> decodeInt maybe (fail "Negative mutez") (pure . T.CvMutez) mmutez SCBool -> do expectDescTag "Bool" 0 Get.getWord8 >>= \case 0x0A -> pure (T.CvBool True) 0x03 -> pure (T.CvBool False) other -> unknownTag "bool" other SCKeyHash -> T.CvKeyHash <$> asum [ decodeAsBytes $ decodeWithTag "key_hash" keyHashDecoders , decodeAsString parseKeyHash ] SCTimestamp -> do expectTag "Timestamp" 0x00 T.CvTimestamp . timestampFromSeconds <$> decodeInt SCAddress -> T.CvAddress <$> decodeEpAddress keyHashDecoders :: [TaggedDecoder KeyHash] keyHashDecoders = [ TaggedDecoder @Void 0x00 keyHashLengthBytes (pure . KeyHash KeyHashEd25519) , TaggedDecoder @Void 0x01 keyHashLengthBytes (pure . KeyHash KeyHashSecp256k1) , TaggedDecoder @Void 0x02 keyHashLengthBytes (pure . KeyHash KeyHashP256) ] -- | Read length of something (list, string, ...). decodeLength :: Get Int decodeLength = Get.label "Length" $ do len <- Get.getWord32be -- @martoon: I'm not sure whether returning 'Int' is valid here. -- Strictly speaking, it may be 'Word32', but there seems to be no easy way -- to check the reference implementation on that. -- One more reason to go with just 'Int' for now is that we need to be able to -- deserialize byte arrays, and 'BS.ByteString' keeps length of type 'Int' -- inside. let len' = fromIntegral @_ @Int len unless (fromIntegral len' == len && len' >= 0) $ fail "Length overflow" return len' decodeAsListRaw :: Get a -> Get a decodeAsListRaw getElems = do l <- decodeLength ? "List length" Get.isolate l (getElems ? "List content") -- | Given decoder for list content, get a whole list decoder. decodeAsList :: Get a -> Get a decodeAsList getElems = do expectTag "List" 0x02 decodeAsListRaw getElems decodeString :: Get MText decodeString = do l <- decodeLength ? "String length" ss <- replicateM l Get.getWord8 ? "String content" ss' <- decodeUtf8' (BS.pack ss) & either (fail . show) pure ? "String UTF-8 decoding" mkMText ss' & either (fail . show) pure ? "Michelson string validity analysis" decodeAsString :: Buildable e => (Text -> Either e a) -> Get a decodeAsString parser = do expectTag "String" 0x01 str <- decodeString either (fail . pretty) pure $ parser $ unMText str decodeAsBytesRaw :: (Int -> Get a) -> Get a decodeAsBytesRaw decode = do l <- decodeLength ? "Byte array length" decode l ? "Byte array content" decodeAsBytes :: (Int -> Get a) -> Get a decodeAsBytes decode = do expectTag "Bytes" 0x0A decodeAsBytesRaw decode decodeBytes :: Get ByteString decodeBytes = decodeAsBytesRaw getByteStringCopy decodeMap :: (SingI k, UnpackedValScope v) => Get $ Map (T.CValue k) (T.Value v) decodeMap = Get.label "Map" $ decodeAsList $ do es <- manyForced $ do expectDescTag "Elt" 2 expectTag "Elt" 0x04 (,) <$> decodeCValue <*> decodeValue either (fail . toString) pure $ Map.fromDistinctAscList <$> ensureDistinctAsc fst es decodeAddress :: Get Address decodeAddress = Get.label "Address" $ asum -- 1 byte is spent on tag specified here (0x00 or 0x01), so we subtract it. [ decodeAsBytes $ \(pred -> lenNoTag) -> decodeWithTagSimple "address" [ (0x00, KeyAddress <$> decodeWithTag "key_hash inside address" keyHashDecoders lenNoTag) , (0x01, Get.label "Contract addres" $ do -- TODO [TM-329]: ignoring length is bad addr <- getByteStringCopy 20 expectTag "Contract address suffix" 0x00 return $ ContractAddress (ContractHash addr) ) ] , decodeAsString parseAddress ] decodeEpAddress :: Get EpAddress decodeEpAddress = do eaAddress <- decodeAddress refAnn <- decodeAnn eaEntryPoint <- epNameFromRefAnn refAnn & either (fail . pretty) pure return EpAddress{..} -- | Read a numeric value. decodeInt :: Num i => Get i decodeInt = fromIntegral @Integer <$> loop 0 0 ? "Number" where loop !offset !acc = do byte <- Get.getWord8 let hasCont = Bits.testBit byte 7 let doCont shft = if hasCont then loop (shft + offset) else pure let addAndCont shft bytePayload = doCont shft $ acc + Bits.shiftL (fromIntegral bytePayload) offset let payload = Bits.clearBit byte 7 if offset > 0 then addAndCont 7 payload else do let sign = if Bits.testBit byte 6 then -1 else 1 let upayload = Bits.clearBit payload 6 (sign *) <$> addAndCont 6 upayload -- | For @UNPACK@ we do not consider annotations at all. -- If they start matter for other purposes some day, remove this function. decodeAnn :: forall (t :: Kind.Type). Get (Annotation t) decodeAnn = pure noAnn -- | Type check instruction occured from a lambda. decodeTypeCheckLam :: forall inp out m. (Typeable inp, SingI inp, SingI out, Typeable out, MonadFail m) => [ExpandedOp] -> m (RemFail T.Instr '[inp] '[out]) decodeTypeCheckLam uinstr = either tcErrToFail pure . evaluatingState tcInitEnv . runExceptT $ do let inp = (sing @inp, starNotes, noAnn) ::& SNil _ :/ instr' <- typeCheckList uinstr inp case instr' of instr ::: out' -> case eqHST1 @out out' of Right Refl -> pure $ RfNormal instr Left err -> -- dummy types, we have no full information to build untyped -- 'T' anyway let tinp = Type TUnit noAnn tout = Type TUnit noAnn in throwError $ TCFailedOnInstr (LAMBDA noAnn tinp tout uinstr) (SomeHST inp) "Unexpected lambda output type" def (Just err) AnyOutInstr instr -> return $ RfAlwaysFails instr where tcErrToFail err = fail $ "Type check failed: " +| err |+ "" tcInitEnv = -- In Tezos @UNPACK@ instruction does not depend on environment. -- -- We initialize each of the fields as 'error' (rather than just defining -- the whole datatype as 'error') to make source of error more obvious -- if access to one of these fields is performed after all. TypeCheckEnv { tcExtFrames = error "runInstrImpl(UNPACK): tcExtFrames touched" --- ^ This is safe because @UNPACK@ never produces Ext instructions , tcContractParam = error "runInstrImpl(UNPACK): tcContractParam touched" --- ^ Used only in @SELF@ interpretation, --- but there is no way for @SELF@ to appear in packed data , tcContracts = error "runInstrImpl(UNPACK): tcContracts touched" --- ^ Used only in typechecking of @contract@ values, --- but it's not possible to unpack to ones. } decodeInstr :: Get ExpandedInstr decodeInstr = Get.label "Instruction" $ do pretag <- Get.getWord8 ? "Pre instr tag" tag <- Get.getWord8 ? "Instr tag" case (pretag, tag) of (0x03, 0x20) -> pure $ DROP (0x05, 0x20) -> DROPN <$> (expectTag "'DROP n' parameter" 0x00 *> decodeInt) (0x03, 0x21) -> pure $ DUP noAnn (0x03, 0x4C) -> pure $ SWAP (0x05, 0x70) -> DIG <$> (expectTag "'DIG n' parameter" 0x00 *> decodeInt) (0x05, 0x71) -> DUG <$> (expectTag "'DUG n' parameter" 0x00 *> decodeInt) (0x07, 0x43) -> do an :: VarAnn <- decodeAnn typ <- decodeType T.withSomeSingT (T.fromUType typ) $ \(st :: Sing t) -> case (opAbsense st, bigMapAbsense st, contractTypeAbsense st) of (Nothing, _, _) -> fail "Operation type cannot appear in PUSH" (_, Nothing, _) -> fail "BigMap type cannot appear in PUSH" (_, _, Nothing) -> fail "'contract' type cannot appear in PUSH" (Just Dict, Just Dict, Just Dict) -> do tval <- decodeValue @t return $ PUSH an typ (T.untypeValue tval) (0x03, 0x46) -> SOME <$> decodeAnn <*> decodeAnn (0x05, 0x3E) -> NONE <$> decodeAnn <*> decodeAnn <*> decodeType (0x03, 0x4F) -> UNIT <$> decodeAnn <*> decodeAnn (0x07, 0x2F) -> IF_NONE <$> decodeOps <*> decodeOps (0x03, 0x42) -> PAIR <$> decodeAnn <*> decodeAnn <*> decodeAnn <*> decodeAnn (0x03, 0x16) -> CAR <$> decodeAnn <*> decodeAnn (0x03, 0x17) -> CDR <$> decodeAnn <*> decodeAnn (0x05, 0x33) -> LEFT <$> decodeAnn <*> decodeAnn <*> decodeAnn <*> decodeAnn <*> decodeType (0x05, 0x44) -> RIGHT <$> decodeAnn <*> decodeAnn <*> decodeAnn <*> decodeAnn <*> decodeType (0x07, 0x2E) -> IF_LEFT <$> decodeOps <*> decodeOps (0x05, 0x3D) -> NIL <$> decodeAnn <*> decodeAnn <*> decodeType (0x03, 0x1B) -> CONS <$> decodeAnn (0x07, 0x2D) -> IF_CONS <$> decodeOps <*> decodeOps (0x03, 0x45) -> SIZE <$> decodeAnn (0x05, 0x24) -> EMPTY_SET <$> decodeAnn <*> decodeAnn <*> decodeComparable (0x07, 0x23) -> EMPTY_MAP <$> decodeAnn <*> decodeAnn <*> decodeComparable <*> decodeType (0x07, 0x72) -> EMPTY_BIG_MAP <$> decodeAnn <*> decodeAnn <*> decodeComparable <*> decodeType (0x05, 0x38) -> MAP <$> decodeAnn <*> decodeOps (0x05, 0x52) -> ITER <$> decodeOps (0x03, 0x39) -> MEM <$> decodeAnn (0x03, 0x29) -> GET <$> decodeAnn (0x03, 0x50) -> UPDATE <$> decodeAnn (0x07, 0x2C) -> IF <$> decodeOps <*> decodeOps (0x05, 0x34) -> LOOP <$> decodeOps (0x05, 0x53) -> LOOP_LEFT <$> decodeOps (0x09, 0x31) -> do res <- decodeAsListRaw $ LAMBDA <$> decodeAnn <*> decodeType <*> decodeType <*> decodeOps void decodeLength return res (0x03, 0x26) -> EXEC <$> decodeAnn (0x03, 0x73) -> APPLY <$> decodeAnn (0x05, 0x1F) -> DIP <$> decodeOps (0x07, 0x1F) -> DIPN <$> (expectTag "'DIP n' parameter" 0x00 *> decodeInt) <*> decodeOps (0x03, 0x27) -> pure FAILWITH (0x05, 0x57) -> CAST <$> decodeAnn <*> decodeType (0x03, 0x58) -> RENAME <$> decodeAnn (0x03, 0x0C) -> PACK <$> decodeAnn (0x05, 0x0D) -> UNPACK <$> decodeAnn <*> decodeType (0x03, 0x1A) -> CONCAT <$> decodeAnn (0x03, 0x6F) -> SLICE <$> decodeAnn (0x03, 0x56) -> ISNAT <$> decodeAnn (0x03, 0x12) -> ADD <$> decodeAnn (0x03, 0x4B) -> SUB <$> decodeAnn (0x03, 0x3A) -> MUL <$> decodeAnn (0x03, 0x22) -> EDIV <$> decodeAnn (0x03, 0x11) -> ABS <$> decodeAnn (0x03, 0x3B) -> NEG <$> decodeAnn (0x03, 0x35) -> LSL <$> decodeAnn (0x03, 0x36) -> LSR <$> decodeAnn (0x03, 0x41) -> OR <$> decodeAnn (0x03, 0x14) -> AND <$> decodeAnn (0x03, 0x51) -> XOR <$> decodeAnn (0x03, 0x3F) -> NOT <$> decodeAnn (0x03, 0x19) -> COMPARE <$> decodeAnn (0x03, 0x25) -> EQ <$> decodeAnn (0x03, 0x3C) -> NEQ <$> decodeAnn (0x03, 0x37) -> LT <$> decodeAnn (0x03, 0x2A) -> GT <$> decodeAnn (0x03, 0x32) -> LE <$> decodeAnn (0x03, 0x28) -> GE <$> decodeAnn (0x03, 0x30) -> INT <$> decodeAnn -- TODO [TM-336]: consider field annotation here and lookup for entrypoint (0x05, 0x55) -> CONTRACT <$> decodeAnn <*> decodeAnn <*> decodeType (0x03, 0x4D) -> TRANSFER_TOKENS <$> decodeAnn (0x03, 0x4E) -> SET_DELEGATE <$> decodeAnn (0x05, 0x1D) -> decodeAsList $ do an1 <- decodeAnn an2 <- decodeAnn expectTag "Pre contract parameter" 0x05 expectTag "Contract parameter" 0x00 p <- decodeType expectTag "Pre contract storage" 0x05 expectTag "Contract storage" 0x01 s <- decodeType expectTag "Pre contract code" 0x05 expectTag "Contract code" 0x02 c <- decodeOps return $ CREATE_CONTRACT an1 an2 (Contract p s c) (0x03, 0x1E) -> IMPLICIT_ACCOUNT <$> decodeAnn (0x03, 0x40) -> NOW <$> decodeAnn (0x03, 0x13) -> AMOUNT <$> decodeAnn (0x03, 0x15) -> BALANCE <$> decodeAnn (0x03, 0x18) -> CHECK_SIGNATURE <$> decodeAnn (0x03, 0x0F) -> SHA256 <$> decodeAnn (0x03, 0x10) -> SHA512 <$> decodeAnn (0x03, 0x0E) -> BLAKE2B <$> decodeAnn (0x03, 0x2B) -> HASH_KEY <$> decodeAnn (0x03, 0x4A) -> STEPS_TO_QUOTA <$> decodeAnn (0x03, 0x47) -> SOURCE <$> decodeAnn (0x03, 0x48) -> SENDER <$> decodeAnn (0x03, 0x54) -> ADDRESS <$> decodeAnn (0x03, 0x75) -> CHAIN_ID <$> decodeAnn (other1, other2) -> fail $ "Unknown instruction tag: 0x" +| hexF other1 |+ hexF other2 |+ "" decodeOp :: Get ExpandedOp decodeOp = Get.label "Op" $ do tag <- Get.lookAhead Get.getWord8 if tag == 0x02 then SeqEx <$> decodeOps ? "Ops seq" else PrimEx <$> decodeInstr ? "One op" decodeOps :: Get [ExpandedOp] decodeOps = decodeAsList $ manyForced decodeOp decodeComparable :: Get Comparable decodeComparable = Get.label "Comparable primitive type" $ Comparable <$> decodeCT <*> decodeAnn decodeCT :: Get CT decodeCT = Get.label "CT" $ do pretag <- Get.getWord8 ? "Pre simple comparable type tag" tag <- Get.getWord8 ? "Simple comparable type tag" case (pretag, tag) of (0x03, 0x5B) -> pure CInt (0x03, 0x62) -> pure CNat (0x03, 0x68) -> pure CString (0x03, 0x69) -> pure CBytes (0x03, 0x6A) -> pure CMutez (0x03, 0x59) -> pure CBool (0x03, 0x5D) -> pure CKeyHash (0x03, 0x6B) -> pure CTimestamp (0x03, 0x6E) -> pure CAddress (other1, other2) -> fail $ "Unknown primitive tag: 0x" +| hexF other1 |+ hexF other2 |+ "" decodeT :: Get T decodeT = Get.label "T" $ doDecode <|> (Tc <$> decodeCT) where doDecode = do pretag <- Get.getWord8 ? "Pre complex type tag" tag <- Get.getWord8 ? "Complex type tag" case (pretag, tag) of (0x03, 0x5C) -> pure TKey (0x03, 0x6C) -> pure TUnit (0x03, 0x67) -> pure TSignature (0x03, 0x74) -> pure TChainId (0x05, 0x63) -> TOption <$> decodeType (0x05, 0x5F) -> TList <$> decodeType (0x05, 0x66) -> TSet <$> decodeComparable (0x03, 0x6D) -> pure TOperation (0x05, 0x5A) -> TContract <$> decodeType (0x07, 0x65) -> TPair <$> decodeAnn <*> decodeAnn <*> decodeType <*> decodeType (0x07, 0x64) -> TOr <$> decodeAnn <*> decodeAnn <*> decodeType <*> decodeType (0x07, 0x5E) -> TLambda <$> decodeType <*> decodeType (0x07, 0x60) -> TMap <$> decodeComparable <*> decodeType (0x07, 0x61) -> TBigMap <$> decodeComparable <*> decodeType (other1, other2) -> fail $ "Unknown primitive tag: 0x" +| hexF other1 |+ hexF other2 |+ "" decodeType :: Get Type decodeType = Type <$> decodeT <*> decodeAnn ? "Type"