morfette: A tool for supervised learning of morphology

[ bsd3, natural-language-processing, program ] [ Propose Tags ] [ Report a vulnerability ]

Morfette is a tool for supervised learning of inflectional morphology. Given a corpus of sentences annotated with lemmas and morphological labels, and optionally a lexicon, morfette learns how to morphologically analyse new sentences.


[Skip to Readme]

Downloads

Maintainer's Corner

Package maintainers

For package maintainers and hackage trustees

Candidates

  • No Candidates
Versions [RSS] 0.2, 0.3, 0.3.1, 0.3.2, 0.3.4, 0.3.5, 0.3.6, 0.4.2, 0.4.3, 0.4.4, 0.4.5, 0.4.6, 0.4.7
Dependencies array, base (>=3 && <=5), binary, bytestring, containers, directory, filepath, mtl, pretty, QuickCheck (>=2.3), text (>=0.11), utf8-string, vector (>=0.10) [details]
License BSD-3-Clause
Author Grzegorz Chrupała
Maintainer Grzegorz Chrupała <grzegorz.chrupala@gmail.com>
Category Natural Language Processing
Home page http://sites.google.com/site/morfetteweb/
Uploaded by GrzegorzChrupala at 2014-02-14T14:15:30Z
Distributions
Reverse Dependencies 1 direct, 0 indirect [details]
Executables morfette
Downloads 9392 total (39 in the last 30 days)
Rating (no votes yet) [estimated by Bayesian average]
Your Rating
  • λ
  • λ
  • λ
Status Docs not available [build log]
Successful builds reported [all 7 reports]

Readme for morfette-0.3.6

[back to package description]
=INTRODUCTION=

Morfette website: http://sites.google.com/site/morfetteweb/

Morfette is a tool for supervised learning of inflectional
morphology. Given a corpus of sentences annotated with lemmas 
and morphological labels, and optionally a lexicon, morfette 
learns how to morphologically analyse new sentences. 

In the learning stage Morfette fits two separate logistic regression
models: one for morphological tagging and one for lemmatization. The
predictions of the models are combined dynamically and produce a 
globally plausible sequence of morphological-tag - lemma pairs for 
a sentence.

In Morfette lemmatization is cast as a classification task where a 
a lemmatization class corresponds to the specification of the edit 
operations which are needed to transform the inflected word form into
the corresponding lemma.

The basic approach is described in (Chrupala et al 2008 and Chrupala 2008). 
The current version of Morfette uses an averaged perceptron to 
fit the models, rather than Maximum Entropy training. The lemmatization 
classes are Edit-Tree-based as described in (Chrupala 2008).

=LICENSE= 
The source code in the src directory is licensed under
the BSD license.

=INSTALLATION=
Pre-built binaries are available from the project website. 
If they don't work on your system you will
need to build from source, using the GHC Haskell compiler. Build
instructions are in [INSTALL]

=USAGE=
Usage: morfette command [OPTION...] [ARG...]
train:    train models
train [OPTION...] TRAIN-FILE MODEL-DIR 
    --dict-file=PATH                      path to optional dictionary
    --language-configuration=es|pl|tr|..  language configuration
    --class-entropy-prune-threshold=NUM   class prune threshold

predict:  predict postags and lemmas using saved model data
predict [OPTION...] MODEL-DIR 
    --beam=+INT  beam size to use
    --tokenize   tokenize input

eval:     evaluate morpho-tagging and lemmatization results
eval [OPTION...] TRAIN-FILE GOLD-FILE TEST-FILE 
    --ignore-case            ignore case for evaluation
    --baseline-file=PATH     path to baseline results
    --dict-file=PATH         path to optional dictionary
    --ignore-punctuation     ignore punctuation for evaluation
    --ignore-pos=POS-prefix  ignore POS starting with POS-prefix for evaluation


=EXAMPLE USAGE=
To train a new model:
morfette train --dict-file=DICT TRAINING-FILE MODEL-DIR +RTS -K100m

To use the model in MODEL-DIR to analyze new data:
morfette predict MODEL-DIR < TEST-DATA > ANALYZED-TEST-DATA

=DATA FORMAT=
Morfette expects both training and testing data to be tokenized and
split into sentences. The format of training data look like this:

Gómez Gómez np0000p
sostiene sostener vmip3s0
que que cs
la el da0fs0
propuesta propuesta ncfs000
no no rn
cambiará cambiar vmif3s0
. . Fp

La el da0fs0
propuesta propuesta ncfs000
será ser vsif3s0
la el da0fs0
misma mismo pi0fs000


There is one token per line, with three columns separated by spaces or
tabs. The columns contain word form, lemma and morphological tag
respectively. Sentences are separated by an empty line. Text should be
encoded in UTF-8.

Test data format is similar, except only the first column is needed:

Gómez
sostiene
que
la
propuesta
no
cambiará
.

La
propuesta
será
la
misma


=References=
[1] Grzegorz Chrupala, Georgiana Dinu and Josef van Genabith. 2008.
    Learning Morphology with Morfette. In Proceedings of LREC 2008.
    http://www.lrec-conf.org/proceedings/lrec2008/pdf/594_paper.pdf

[2] Grzegorz Chrupala. 2008. Towards a Machine-Learning Architecture
    for Lexical Functional Grammar Parsing. Chapter 6. PhD
    dissertation, Dublin City
    University. 
    http://www.lsv.uni-saarland.de/personalPages/gchrupala/papers/phd.pdf