Copyright | (c) Adam Scibior 2015-2020 |
---|---|
License | MIT |
Maintainer | leonhard.markert@tweag.io |
Stability | experimental |
Portability | GHC |
Safe Haskell | None |
Language | Haskell2010 |
Particle Marginal Metropolis-Hastings (PMMH) sampling.
Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. 2010. Particle Markov chain Monte Carlo Methods. Journal of the Royal Statistical Society 72 (2010), 269-342. http://www.stats.ox.ac.uk/~doucet/andrieu_doucet_holenstein_PMCMC.pdf
Synopsis
- pmmh :: MonadInfer m => Int -> Int -> Int -> Traced m b -> (b -> Sequential (Population m) a) -> m [[(a, Log Double)]]
Documentation
:: MonadInfer m | |
=> Int | number of Metropolis-Hastings steps |
-> Int | number of time steps |
-> Int | number of particles |
-> Traced m b | model parameters prior |
-> (b -> Sequential (Population m) a) | model |
-> m [[(a, Log Double)]] |
Particle Marginal Metropolis-Hastings sampling.