module Crypto.Lol.Gadget
( Gadget(..), Decompose(..), Correct(..)
, TrivGad, BaseBGad
) where
import Crypto.Lol.LatticePrelude
import Control.Applicative
import Control.Arrow
data TrivGad
data BaseBGad b
class Ring u => Gadget gad u where
gadget :: Tagged gad [u]
encode :: u -> Tagged gad [u]
encode s = ((* s) <$>) <$> gadget
class (Gadget gad u, Reduce (DecompOf u) u) => Decompose gad u where
type DecompOf u
decompose :: u -> Tagged gad [DecompOf u]
class Gadget gad u => Correct gad u where
correct :: Tagged gad [u] -> (u, [LiftOf u])
instance (Gadget gad a, Gadget gad b) => Gadget gad (a,b) where
gadget = (++) <$> (map (,zero) <$> gadget) <*> (map (zero,) <$> gadget)
instance (Decompose gad a, Decompose gad b, DecompOf a ~ DecompOf b)
=> Decompose gad (a,b) where
type DecompOf (a,b) = DecompOf a
decompose (a,b) = (++) <$> decompose a <*> decompose b
instance (Correct gad a, Correct gad b,
Mod a, Mod b, Field a, Field b, Lift' a, Lift' b,
ToInteger (LiftOf a), ToInteger (LiftOf b))
=> Correct gad (a,b) where
correct =
let gada = gadget :: Tagged gad [a]
gadb = gadget :: Tagged gad [b]
ka = length gada
qaval = toInteger $ proxy modulus (Proxy::Proxy a)
qbval = toInteger $ proxy modulus (Proxy::Proxy b)
qamod = fromIntegral qaval
qbmod = fromIntegral qbval
qainv = recip qamod
qbinv = recip qbmod
in \tv ->
let v = untag tv
(wa,wb) = splitAt ka v
(va,xb) = unzip $
(\(a,b) -> let x = toInteger $ lift b
in (qbinv * (a fromIntegral x), x)) <$> wa
(vb,xa) = unzip $
(\(a,b) -> let x = toInteger $ lift a
in (qainv * (b fromIntegral x), x)) <$> wb
(sa,ea) = (qbmod *) ***
zipWith (\x e -> x + qbval * toInteger e) xb $
correct (tag va `asTypeOf` gada)
(sb,eb) = (qamod *) ***
zipWith (\x e -> x + qaval * toInteger e) xa $
correct (tag vb `asTypeOf` gadb)
in ((sa,sb), ea ++ eb)