module Compose where import Prelude hiding (Monad(..)) -- | TODO -- | -- | 1. default methods are currently not supported -- | ie. if we remove the definition of fail method it fails -- | as I assume that dictionaries are Non Recursive -- | -- | 2. check what happens if we import the instance (it should work) data ST s a = ST {runState :: s -> (a,s)} {-@ data ST s a
Bool, q :: s -> s -> Bool, r :: s -> a -> Bool> = ST (runState :: x:s
-> (a Bool, q :: s -> s -> Bool, r :: s -> a -> Bool>. ST s a -> x:s -> (a Bool >. x:a -> ST v == s}, {\s v -> x == v}> s a;
>>= :: forall s a b < pref :: s -> Bool, postf :: s -> s -> Bool
, pre :: s -> Bool, postg :: s -> s -> Bool
, post :: s -> s -> Bool
, rg :: s -> a -> Bool
, rf :: s -> b -> Bool
, r :: s -> b -> Bool
, pref0 :: a -> Bool
>.
{x::s)) @-}
{-@ runState :: forall
) @-}
class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
instance Monad (ST s) where
{-@ instance Monad ST s where
return :: forall s a
|- a
, y::s
, w::s
|- s
s a)
-> (a
s b) ;
>> :: forall s a b < pref :: s -> Bool, postf :: s -> s -> Bool
, pre :: s -> Bool, postg :: s -> s -> Bool
, post :: s -> s -> Bool
, rg :: s -> a -> Bool
, rf :: s -> b -> Bool
, r :: s -> b -> Bool
>.
{x::s
, y::s
, w::s
|- s
s a)
-> (ST
s b)
@-}
return x = ST $ \s -> (x, s)
(ST g) >>= f = ST (\x -> case g x of {(y, s) -> (runState (f y)) s})
(ST g) >> f = ST (\x -> case g x of {(y, s) -> (runState f) s})
{-@ incr :: ST <{\x -> true}, {\x v -> v = x + 1}, {\x v -> v = x}> Int Int @-}
incr :: ST Int Int
incr = ST $ \x -> (x, x + 1)
{-@ foo :: ST <{\x -> true}, {\x v -> true}, {\x v -> v = 0}> Bool Int @-}
foo :: ST Bool Int
foo = return 0
{-@ incr2 :: ST <{\x -> true}, {\x v -> v = x + 2}, {\x v -> v = x + 1}> Int Int @-}
incr2 :: ST Int Int
incr2 = incr >> incr
{-@ incr3 :: ST <{\x -> true}, {\x v -> v = x + 3}, {\x v -> v = x + 2}> Int Int @-}
incr3 :: ST Int Int
incr3
= incr >> incr >> incr
run :: (Int, Int)
{-@ run :: ({v:Int | v = 1}, {v:Int | v = 2}) @-}
run = (runState incr2) 0