{-@ LIQUID "--pruneunsorted" @-} -- | A somewhat fancier example demonstrating the use of Abstract Predicates and exist-types module Ex () where ------------------------------------------------------------------------- -- | Data types --------------------------------------------------------- ------------------------------------------------------------------------- data Vec a = Nil | Cons a (Vec a) -- | We can encode the notion of length as an inductive measure @llen@ {-@ measure llen :: forall a. Vec a -> Int llen (Nil) = 0 llen (Cons x xs) = 1 + llen(xs) @-} -- | As a warmup, lets check that a /real/ length function indeed computes -- the length of the list. {-@ sizeOf :: xs:Vec a -> {v: Int | v = llen(xs)} @-} sizeOf :: Vec a -> Int sizeOf Nil = 0 sizeOf (Cons _ xs) = 1 + sizeOf xs ------------------------------------------------------------------------- -- | Higher-order fold -------------------------------------------------- ------------------------------------------------------------------------- -- | Time to roll up the sleeves. Here's a a higher-order @foldr@ function -- for our `Vec` type. Note that the `op` argument takes an extra /ghost/ -- parameter that will let us properly describe the type of `efoldr` {-@ efoldr :: forall a b
x1:b -> Bool>. (xs:Vec a -> x:a -> b
-> b
) -> b
-> ys: Vec a -> b
@-} efoldr :: (Vec a -> a -> b -> b) -> b -> Vec a -> b efoldr op b Nil = b efoldr op b (Cons x xs) = op xs x (efoldr op b xs) ------------------------------------------------------------------------- -- | Clients of `efold` ------------------------------------------------- ------------------------------------------------------------------------- -- | Finally, lets write a few /client/ functions that use `efoldr` to -- operate on the `Vec`s. -- | First: Computing the length using `efoldr` {-@ size :: xs:Vec a -> {v: Int | v = llen(xs)} @-} size :: Vec a -> Int size = efoldr (\_ _ n -> n + 1) 0 {-@ suc :: x:Int -> {v: Int | v = x + 1} @-} suc :: Int -> Int suc x = x + 1 -- | Second: Appending two lists using `efoldr` {-@ app :: xs: Vec a -> ys: Vec a -> {v: Vec a | llen(v) = 1 + llen(xs) + llen(ys) } @-} app xs ys = efoldr (\_ z zs -> Cons z zs) ys xs