% Measures
Measures
-----------------------
\begin{code}
module Measures where
import Prelude hiding ((!!), length)
import Language.Haskell.Liquid.Prelude
\end{code}
Measuring A List's length in logic
----------------------------------
On `List` data type
\begin{code}
infixr `C`
data L a = N | C a (L a)
\end{code}
We define a **measure** for the length of a `List`
\begin{code}
{-@ measure llen :: (L a) -> Int
llen(N) = 0
llen(C x xs) = 1 + (llen xs)
@-}
\end{code}
\begin{code} LiquidHaskell then **automatically strengthens** the types of data constructors
data L a where
N :: {v : L a | (llen v) = 0}
C :: x:a -> xs:(L a) -> {v:(L a) |(llen v) = 1 + (llen xs)}
\end{code}
Measuring A List's length in logic
----------------------------------
Now we can verify
\begin{code}
{-@ length :: xs:(L a) -> {v:Int | v = (llen xs)} @-}
length :: L a -> Int
length N = 0
length (C _ xs) = 1 + (length xs)
\end{code}
Measuring A List's length in logic
----------------------------------
And we can type `(!!)` as
\begin{code}
{-@ (!!) :: ls:(L a) -> i:{v:Nat | v < (llen ls)} -> a @-}
(!!) :: L a -> Int -> a
(C x _) !! 0 = x
(C _ xs)!! n = xs!!(n-1)
_ !! _ = liquidError "This should not happen!"
\end{code}
Demo:
Lets see what happens if we **change** the precondition
Another measure for List
--------------------------
We define a new **measure** to check nullity of a `List`
\begin{code}
{-@ measure isNull :: (L a) -> Prop
isNull(N) = true
isNull(C x xs) = false
@-}
\end{code}
\begin{code} LiquidHaskell then **automatically strengthens** the types of data constructors
data L a where
N :: {v : L a | isNull v}
C :: x:a -> xs:(L a) -> {v:(L a) | not (isNull v)}
\end{code}
Multiple measures for List
--------------------------
The types of data constructors will be the **conjuction** of all the inferred types:
\begin{code} The types from `llen` definition
data L a where
N :: {v : L a | (llen v) = 0}
C :: a -> xs: L a -> {v:L a |(llen v) = 1 + (llen xs)}
\end{code}
\begin{code} and the types from `isNull`
data L a where
N :: {v : L a | isNull v}
C :: a -> xs: L a -> {v:L a | not (isNull v)}
\end{code}
\begin{code} So, the final types will be
data L a where
N :: {v : L a | (llen v) = 0 && (isNull v)}
C :: a -> xs: L a -> {v:L a |(llen v) = 1 + (llen xs) && not (isNull v)}
\end{code}
Invariants in Data Constructors
------------------------------
We can refine the definition of data types setting **invariants**
\begin{code}
{-@ data L a = N
| C (x :: a) (xs :: L {v:a | x <= v}) @-}
\end{code}
\begin{code} As before,the types of data constuctors are strengthened to
data L a where
N :: L a
C :: x:a -> xs: L {v:a | x <= v} -> L a
\end{code}
LiquidHaskell
- **Proves** the property when `C` is called
- **Assumes** the property when `C` is opened
Increasing Lists
-----------------
This invariant constrains all Lists to **increasing**
\begin{code}
{-@ data L a = N
| C (x :: a) (xs :: L {v:a | x <= v}) @-}
\end{code}
Insert sort
\begin{code}
{-@ insert :: Ord a => a -> L a -> L a @-}
insert :: Ord a => a -> L a -> L a
insert y (x `C` xs) | x <= y = x `C` insert y xs
| otherwise = y `C` insert x xs
{-@ insertSort :: Ord a => [a] -> L a @-}
insertSort :: Ord a => [a] -> L a
insertSort = foldr insert N
\end{code}
What if increasing and decreasing lists should co-exist?
We use **abstract refinements** to allow it!