Abstract Refinements {#induction}
=================================
Induction
---------
Encoding *induction* with Abstract refinements
\begin{code}
module Loop where
import Prelude hiding ((!!), foldr, length, (++))
-- import Measures
import Language.Haskell.Liquid.Prelude
{-@ LIQUID "--no-termination" @-}
{-@ measure llen :: (L a) -> Int
llen (N) = 0
llen (C x xs) = 1 + (llen xs) @-}
size :: L a -> Int
add :: Int -> Int -> Int
loop :: Int -> Int -> α -> (Int -> α -> α) -> α
foldr :: (L a -> a -> b -> b) -> b -> L a -> b
\end{code}
Induction
=========
Example: `loop` redux
---------------------
Recall the *higher-order* `loop`
\begin{code}
loop lo hi base f = go lo base
where
go i acc
| i < hi = go (i+1) (f i acc)
| otherwise = acc
\end{code}
Iteration Dependence
--------------------
We used `loop` to write
\begin{code}
{-@ add :: n:Nat -> m:Nat -> {v:Nat|v=m+n} @-}
add n m = loop 0 m n (\_ i -> i + 1)
\end{code}
**Problem**
- As property only holds after *last* loop iteration...
- ... cannot instantiate `α` with `{v:Int | v = n + m}`
Iteration Dependence
--------------------
We used `loop` to write
\begin{code}
{-@ add :: n:Nat -> m:Nat -> {v:Nat|v=m+n} @-}
add n m = loop 0 m n (\_ i -> i + 1)
\end{code}
**Problem**
Need invariant relating *iteration* `i` with *accumulator* `acc`
Iteration Dependence
--------------------
We used `loop` to write
\begin{code}
{-@ add :: n:Nat -> m:Nat -> {v:Nat|v=m+n} @-}
add n m = loop 0 m n (\_ i -> i + 1)
\end{code}
**Solution**
- Abstract Refinement `p :: Int -> a -> Prop`
- `(p i acc)` relates *iteration* `i` with *accumulator* `acc`
Induction in `loop` (by hand)
-----------------------------
\begin{code}
loop lo hi base f = go lo base
where
go i acc
| i < hi = go (i+1) (f i acc)
| otherwise = acc
\end{code}
------------ --- ----------------------------
**Assume** : `out = loop lo hi base f`
**Prove** : `(p hi out)`
------------ --- ----------------------------
Induction in `loop` (by hand)
-----------------------------
\begin{code}
loop lo hi base f = go lo base
where
go i acc
| i < hi = go (i+1) (f i acc)
| otherwise = acc
\end{code}
**Base Case:** Initial accumulator `base` satisfies invariant
`(p lo base)`
Induction in `loop` (by hand)
-----------------------------
\begin{code}
loop lo hi base f = go lo base
where
go i acc
| i < hi = go (i+1) (f i acc)
| otherwise = acc
\end{code}
**Inductive Step:** `f` *preserves* invariant at `i`
`(p i acc) => (p (i+1) (f i acc))`
Induction in `loop` (by hand)
-----------------------------
\begin{code}
loop lo hi base f = go lo base
where
go i acc
| i < hi = go (i+1) (f i acc)
| otherwise = acc
\end{code}
**"By Induction"** `out` satisfies invariant at `hi`
`(p hi out)`
Induction in `loop` (by type)
-----------------------------
Induction is an **abstract refinement type** for `loop`
\begin{code}
{-@ loop :: forall a a -> Prop>.
lo:Int
-> hi:{Int | lo <= hi}
-> base:a
-> f:(i:Int -> a
-> a
)
-> a
@-}
\end{code}
Induction in `loop` (by type)
-----------------------------
`p` is the *index dependent* invariant!
\begin{code}
p :: Int -> a -> Prop -- invt
base :: a
-- base
f :: i:Int -> a
-> a
-- step
out :: a
-- goal
\end{code}
Using Induction
---------------
\begin{code}
{-@ add :: n:Nat -> m:Nat -> {v:Nat| v=m+n} @-}
add n m = loop 0 m n (\_ z -> z + 1)
\end{code}
**Verified** by *instantiating* the abstract refinement of `loop`
`p := \i acc -> acc = i + n`
Generalizes To Structures
-------------------------
Same idea applies for induction over *structures* ...
Structural Induction
====================
Example: Lists
--------------
\begin{code}
data L a = N
| C a (L a)
\end{code}
Lets write a generic loop over such lists ...
Example: `foldr`
----------------
\begin{code}
foldr f b N = b
foldr f b (C x xs) = f xs x (foldr f b xs)
\end{code}
Lets brace ourselves for the type...
Example: `foldr`
----------------
\begin{code}
{-@ foldr ::
forall a b b -> Prop>.
(xs:_ -> x:_ -> b
-> b
)
-> b
-> ys:L a
-> b
@-}
foldr f b N = b
foldr f b (C x xs) = f xs x (foldr f b xs)
\end{code}
Lets step through the type...
`foldr`: Abstract Refinement
----------------------------
\begin{code}
p :: L a -> b -> Prop
step :: xs:_ -> x:_ -> b -> b
base :: b
ys :: L a
out :: b
\end{code}
`(p xs b)` relates `b` with **folded** `xs`
`p :: L a -> b -> Prop`
`foldr`: Base Case
------------------
\begin{code}
p :: L a -> b -> Prop
step :: xs:_ -> x:_ -> b -> b
base :: b
ys :: L a
out :: b
\end{code}
`base` is related to **empty** list `N`
`base :: b
`
`foldr`: Ind. Step
------------------
\begin{code}
p :: L a -> b -> Prop
step :: xs:_ -> x:_ -> b -> b
base :: b
ys :: L a
out :: b
\end{code}
`step` **extends** relation from `xs` to `C x xs`
`step :: xs:_ -> x:_ -> b
-> b
`
`foldr`: Output
---------------
\begin{code}
p :: L a -> b -> Prop
step :: xs:_ -> x:_ -> b -> b
base :: b
ys :: L a
out :: b
\end{code}
Hence, relation holds between `out` and **entire input** list `ys`
`out :: b
`
Using `foldr`: Size
-------------------
We can now verify
\begin{code}
{-@ size :: xs:_ -> {v:Int| v = (llen xs)} @-}
size = foldr (\_ _ n -> n + 1) 0
\end{code}
by *automatically instantiating*
`p := \xs acc -> acc = (llen xs)`
Using `foldr`: Append
---------------------
We can now verify
\begin{code}
{-@ (++) :: xs:_ -> ys:_ -> (Cat a xs ys) @-}
xs ++ ys = foldr (\_ -> C) ys xs
\end{code}
where
\begin{code}
{-@ type Cat a X Y =
{v:_|(llen v) = (llen X) + (llen Y)} @-}
\end{code}
By automatically instantiating
`p := \xs acc -> llen acc = llen xs + llen ys`
Recap
-----
Abstract refinements *decouple* **invariant** from **traversal**
**Reusable** specifications for higher-order functions.
**Automatic** checking and instantiation by SMT.
Recap
-----
1. Refinements: Types + Predicates
2. Subtyping: SMT Implication
3. Measures: Strengthened Constructors
4. Abstract: Refinements over Type Signatures
+ **Functions**
+