Abstract Refinements {#induction}
=================================
Decoupling Invariants & Code
----------------------------
Abstract refinements decouple invariants from code
**Next:** Precise Specifications for HOFs
\begin{code}
module Loop where
import Prelude hiding ((!!), foldr, length, (++))
import Data.Set hiding (insert, foldr,size,filter, append)
-- import Measures
import Language.Haskell.Liquid.Prelude
{-@ LIQUID "--no-termination" @-}
{-@ LIQUID "--short-names" @-}
{-@ measure size :: (L a) -> Int
size (N) = 0
size (C x xs) = 1 + (size xs) @-}
{-@ measure elems :: L a -> (Set a)
elems (N) = (Set_empty 0)
elems (C x xs) = (Set_cup (Set_sng x) (elems xs))
@-}
{-@ type UnElems Xs Ys = {v:_ | elems v = Set_cup (elems Xs) (elems Ys)} @-}
size :: L a -> Int
add :: Int -> Int -> Int
loop :: Int -> Int -> α -> (Int -> α -> α) -> α
ifoldr :: (L a -> a -> b -> b) -> b -> L a -> b
\end{code}
Structural Induction
====================
Example: Lists
--------------
\begin{code}
data L a = N
| C a (L a)
\end{code}
Lets write a generic loop over lists ...
Example: `foldr`
----------------
\begin{code}
foldr :: (α -> β -> β) -> β -> L α -> β
foldr f acc N = acc
foldr f acc (C x xs) = f x (foldr f acc xs)
\end{code}
Problem
-------
Recall our *failed attempt* to write `append` with `foldr`
\begin{spec}
{-@ app :: xs:_ -> ys:_ -> UnElems xs ys @-}
app xs ys = foldr C ys xs
\end{spec}
- Property holds after *last* iteration
- Cannot instantiate `α` with `UnElems xs ys`
Problem
-------
Recall our *failed attempt* to write `append` with `foldr`
\begin{spec}
{-@ app :: xs:_ -> ys:_ -> UnElems xs ys @-}
app xs ys = foldr C ys xs
\end{spec}
Need to **relate** each *iteration* with *accumulator* `acc`
Solution: Inductive `foldr`
---------------------------
Lets brace ourselves for the type...
Solution: Inductive `foldr`
---------------------------
\begin{code}
{-@ ifoldr ::
forall a b
b -> Prop>.
(xs:_ -> x:_ -> b
-> b
)
-> b
-> ys:L a
-> b
@-}
ifoldr f b N = b
ifoldr f b (C x xs) = f xs x (ifoldr f b xs)
\end{code}
Lets step through the type...
`ifoldr`: Abstract Refinement
-----------------------------
\begin{spec}
p :: L a -> b -> Prop
step :: xs:_ -> x:_ -> b
-> b
base :: b
ys :: L a
out :: b
\end{spec}
`(p xs b)` relates `b` with **folded** `xs`
`p :: L a -> b -> Prop`
`ifoldr`: Base Case
-------------------
\begin{spec}
p :: L a -> b -> Prop
step :: xs:_ -> x:_ -> b
-> b
base :: b
ys :: L a
out :: b
\end{spec}
`base` is related to **empty** list `N`
`base :: b
`
`ifoldr`: Ind. Step
-------------------
\begin{spec}
p :: L a -> b -> Prop
step :: xs:_ -> x:_ -> b
-> b
base :: b
ys :: L a
out :: b
\end{spec}
`step` **extends** relation from `xs` to `C x xs`
`step :: xs:_ -> x:_ -> b
-> b
`
`ifoldr`: Output
----------------
\begin{spec}
p :: L a -> b -> Prop
step :: xs:_ -> x:_ -> b
-> b
base :: b
ys :: L a
out :: b
\end{spec}
Hence, relation holds between `out` and **entire input** list `ys`
`out :: b
`
Using `ifoldr`: Size
-------------------
We can now verify
\begin{code}
{-@ size :: xs:_ -> {v:Int| v = size xs} @-}
size = ifoldr (\_ _ n -> n + 1) 0
\end{code}
by *automatically instantiating* `p` with
`\xs acc -> acc = size xs`
Using `foldr`: Append
---------------------
We can now verify
\begin{code}
{-@ (++) :: xs:_ -> ys:_ -> UnElems xs ys @-}
xs ++ ys = ifoldr (\_ -> C) ys xs
\end{code}
By *automatically* instantiating `p` with
`\xs acc -> elems acc = Set_cup (elems xs) (elems ys)`
More Examples
-------------
Induction over *structures* from `GHC.List`
+ `length`
+ `append`
+ `filter`
+ ...
[DEMO 02_AbstractRefinements.hs #2](../hs/02_AbstractRefinements.hs)
Recap
-----
Abstract refinements *decouple* **invariant** from **iteration**
**Precise** specs for higher-order functions.
**Automatic** checking and instantiation by SMT.
Recap
-----
1. Refinements: Types + Predicates
2. Subtyping: SMT Implication
3. Measures: Strengthened Constructors
4. Abstract: Refinements over Type Signatures
+
**Functions**
+
5.
[Evaluation](11_Evaluation.lhs.slides.html)