---
layout: post
title: "Text Bug"
date: 2014-03-01
comments: true
external-url:
author: Eric Seidel
published: false
categories: benchmarks, text
demo: TextBug.hs
---
For our last post on `text`, we return to the topic of building a new `Text`
value, i.e. proving the safety of write operations.
\begin{code}
{-# LANGUAGE BangPatterns, CPP, MagicHash, Rank2Types,
RecordWildCards, UnboxedTuples, ExistentialQuantification #-}
{-@ LIQUID "--no-termination" @-}
module TextBug where
import Control.Monad.ST.Unsafe (unsafeIOToST)
import Foreign.C.Types (CSize)
import GHC.Base hiding (unsafeChr)
import GHC.ST
import GHC.Word (Word16(..))
import Data.Bits hiding (shiftL)
import Data.Word
import Language.Haskell.Liquid.Prelude
--------------------------------------------------------------------------------
--- From TextInternal
--------------------------------------------------------------------------------
{-@ shiftL :: i:Nat -> n:Nat -> {v:Nat | ((n = 1) => (v = (i * 2)))} @-}
shiftL :: Int -> Int -> Int
shiftL = undefined -- (I# x#) (I# i#) = I# (x# `iShiftL#` i#)
{-@ measure isUnknown :: Size -> Prop
isUnknown (Exact n) = false
isUnknown (Max n) = false
isUnknown (Unknown) = true
@-}
{-@ measure getSize :: Size -> Int
getSize (Exact n) = n
getSize (Max n) = n
@-}
{-@ invariant {v:Size | (getSize v) >= 0} @-}
data Size = Exact {-# UNPACK #-} !Int -- ^ Exact size.
| Max {-# UNPACK #-} !Int -- ^ Upper bound on size.
| Unknown -- ^ Unknown size.
deriving (Eq, Show)
{-@ upperBound :: k:Nat -> s:Size -> {v:Nat | v = ((isUnknown s) ? k : (getSize s))} @-}
upperBound :: Int -> Size -> Int
upperBound _ (Exact n) = n
upperBound _ (Max n) = n
upperBound k _ = k
data Step s a = Done
| Skip !s
| Yield !a !s
data Stream a =
forall s. Stream
(s -> Step s a) -- stepper function
!s -- current state
!Size -- size hint
{-@ data Array = Array { aBA :: ByteArray#
, aLen :: Nat
}
@-}
data Array = Array {
aBA :: ByteArray#
, aLen :: !Int
}
{-@ measure alen :: Array -> Int
alen (Array a n) = n
@-}
{-@ aLen :: a:Array -> {v:Nat | v = (alen a)} @-}
{-@ type ArrayN N = {v:Array | (alen v) = N} @-}
{-@ type AValidI A = {v:Nat | v < (alen A)} @-}
{-@ type AValidO A = {v:Nat | v <= (alen A)} @-}
{-@ type AValidL O A = {v:Nat | (v+O) <= (alen A)} @-}
{-@ data MArray s = MArray { maBA :: MutableByteArray# s
, maLen :: Nat } @-}
data MArray s = MArray {
maBA :: MutableByteArray# s
, maLen :: !Int
}
{-@ measure malen :: MArray s -> Int
malen (MArray a n) = n
@-}
{-@ maLen :: a:MArray s -> {v:Nat | v = (malen a)} @-}
{-@ type MArrayN s N = {v:MArray s | (malen v) = N} @-}
{-@ type MAValidI MA = {v:Nat | v < (malen MA)} @-}
{-@ type MAValidO MA = {v:Nat | v <= (malen MA)} @-}
{-@ new :: forall s. n:Nat -> ST s (MArrayN s n) @-}
new :: forall s. Int -> ST s (MArray s)
new n
| n < 0 || n .&. highBit /= 0 = error $ "new: size overflow"
| otherwise = ST $ \s1# ->
case newByteArray# len# s1# of
(# s2#, marr# #) -> (# s2#, MArray marr# n #)
where !(I# len#) = bytesInArray n
highBit = maxBound `xor` (maxBound `shiftR` 1)
bytesInArray n = n `shiftL` 1
{-@ unsafeWrite :: ma:MArray s -> MAValidI ma -> Word16 -> ST s () @-}
unsafeWrite :: MArray s -> Int -> Word16 -> ST s ()
unsafeWrite MArray{..} i@(I# i#) (W16# e#)
| i < 0 || i >= maLen = liquidError "out of bounds"
| otherwise = ST $ \s1# ->
case writeWord16Array# maBA i# e# s1# of
s2# -> (# s2#, () #)
{-@ copyM :: dest:MArray s
-> didx:MAValidO dest
-> src:MArray s
-> sidx:MAValidO src
-> {v:Nat | (((didx + v) <= (malen dest))
&& ((sidx + v) <= (malen src)))}
-> ST s ()
@-}
copyM :: MArray s -- ^ Destination
-> Int -- ^ Destination offset
-> MArray s -- ^ Source
-> Int -- ^ Source offset
-> Int -- ^ Count
-> ST s ()
copyM dest didx src sidx count
| count <= 0 = return ()
| otherwise =
liquidAssert (sidx + count <= maLen src) .
liquidAssert (didx + count <= maLen dest) .
unsafeIOToST $ memcpyM (maBA dest) (fromIntegral didx)
(maBA src) (fromIntegral sidx)
(fromIntegral count)
{-@ memcpyM :: MutableByteArray# s -> CSize -> MutableByteArray# s -> CSize -> CSize -> IO () @-}
memcpyM :: MutableByteArray# s -> CSize -> MutableByteArray# s -> CSize -> CSize -> IO ()
memcpyM = undefined
{-@ unsafeFreeze :: ma:MArray s -> ST s (ArrayN (malen ma)) @-}
unsafeFreeze :: MArray s -> ST s Array
unsafeFreeze MArray{..} = ST $ \s# ->
(# s#, Array (unsafeCoerce# maBA) maLen #)
{-@ unsafeIndex :: a:Array -> AValidI a -> Word16 @-}
unsafeIndex :: Array -> Int -> Word16
unsafeIndex Array{..} i@(I# i#)
| i < 0 || i >= aLen = liquidError "out of bounds"
| otherwise = case indexWord16Array# aBA i# of
r# -> (W16# r#)
data Text = Text Array Int Int
{-@ data Text [tlen] = Text (arr :: Array)
(off :: TValidO arr)
(len :: TValidL off arr)
@-}
{-@ measure tarr :: Text -> Array
tarr (Text a o l) = a
@-}
{-@ measure toff :: Text -> Int
toff (Text a o l) = o
@-}
{-@ measure tlen :: Text -> Int
tlen (Text a o l) = l
@-}
{-@ type TValidI T = {v:Nat | v < (tlen T)} @-}
{-@ type TValidO A = {v:Nat | v <= (alen A)} @-}
{-@ type TValidL O A = {v:Nat | (v+O) <= (alen A)} @-}
--------------------------------------------------------------------------------
--- From TextRead
--------------------------------------------------------------------------------
{-@ measure numchars :: Array -> Int -> Int -> Int @-}
{-@ measure tlength :: Text -> Int @-}
{-@ invariant {v:Text | (tlength v) = (numchars (tarr v) (toff v) (tlen v))} @-}
--------------------------------------------------------------------------------
--- From TextWrite
--------------------------------------------------------------------------------
{-@ qualif Ord(v:int, i:int, x:Char)
: ((((ord x) < 65536) => (v = i))
&& (((ord x) >= 65536) => (v = (i + 1))))
@-}
{-@ predicate Room C MA I = (((One C) => (RoomN 1 MA I))
&& ((Two C) => (RoomN 2 MA I)))
@-}
{-@ predicate RoomN N MA I = (I+N <= (malen MA)) @-}
{-@ measure ord :: Char -> Int @-}
{-@ ord :: c:Char -> {v:Int | v = (ord c)} @-}
{-@ predicate One C = ((ord C) < 65536) @-}
{-@ predicate Two C = ((ord C) >= 65536) @-}
{-@ writeChar :: ma:MArray s -> i:Nat -> {v:Char | (Room v ma i)}
-> ST s {v:Nat | (RoomN v ma i)}
@-}
writeChar :: MArray s -> Int -> Char -> ST s Int
writeChar marr i c
| n < 0x10000 = do
unsafeWrite marr i (fromIntegral n)
return 1
| otherwise = do
unsafeWrite marr i lo
unsafeWrite marr (i+1) hi
return 2
where n = ord c
m = n - 0x10000
lo = fromIntegral $ (m `shiftR` 10) + 0xD800
hi = fromIntegral $ (m .&. 0x3FF) + 0xDC00
--------------------------------------------------------------------------------
--- Helpers
--------------------------------------------------------------------------------
{-@ qualif MALenLE(v:int, a:MArray s): v <= (malen a) @-}
{-@ qualif ALenLE(v:int, a:Array): v <= (alen a) @-}
\end{code}
Let's take a look at `mapAccumL`, which combines a map and a fold
over a `Stream` and bundles the result of the map into a new `Text`.
Again, we'll want to focus our attention on the `Yield` case of the
inner loop.
\begin{code}
mapAccumL f z0 (Stream next0 s0 len) =
(nz, Text na 0 nl)
where
mlen = upperBound 4 len
(na,(nz,nl)) = runST $ do
(marr,x) <- (new mlen >>= \arr ->
outer arr mlen z0 s0 0)
arr <- unsafeFreeze marr
return (arr,x)
outer arr top = loop
where
loop !z !s !i =
case next0 s of
Done -> return (arr, (z,i))
Skip s' -> loop z s' i
Yield x s'
| j >= top -> do
let top' = (top + 1) `shiftL` 1
arr' <- new top'
copyM arr' 0 arr 0 top
outer arr' top' z s i
| otherwise -> do
let (z',c) = f z x
d <- writeChar arr i c
loop z' s' (i+d)
where j | ord x < 0x10000 = i
| otherwise = i + 1
\end{code}
If you recall `unstream` from last time, you'll notice that this loop body
looks almost identical to the one found in `unstream`, but LiquidHaskell has
flagged the `writeChar` call as unsafe! What's going on here?
Let's take a look at `j`, recalling that it carried a crucial part of the safety
\begin{code} proof last time, and see what LiquidHaskell was able to infer.
{v:Int | ((ord x >= 65536) => (v == i+1))
&& ((ord x < 65536) => (v == i))}
\end{code}
Well that's not very useful at all! LiquidHaskell can prove that it's safe to
write `x` but here we are trying to write `c` into the array. This is actually
a *good* thing though, because `c` is the result of calling an arbitrary
function `f` on `x`! We haven't constrained `f` in any way, so it could easily
return a character above `U+10000` given any input.
So `mapAccumL` is actually *unsafe*, and our first wild bug caught by
LiquidHaskell! The fix is luckily easy, we simply have to lift the
`let (z',c) = f z x` binder into the `where` clause, and change `j` to
depend on `ord c` instead.
\begin{code}
mapAccumL' f z0 (Stream next0 s0 len) =
(nz, Text na 0 nl)
where
mlen = upperBound 4 len
(na,(nz,nl)) = runST $ do
(marr,x) <- (new mlen >>= \arr ->
outer arr mlen z0 s0 0)
arr <- unsafeFreeze marr
return (arr,x)
outer arr top = loop
where
loop !z !s !i =
case next0 s of
Done -> return (arr, (z,i))
Skip s' -> loop z s' i
Yield x s'
| j >= top -> do
let top' = (top + 1) `shiftL` 1
arr' <- new top'
copyM arr' 0 arr 0 top
outer arr' top' z s i
| otherwise -> do
d <- writeChar arr i c
loop z' s' (i+d)
where (z',c) = f z x
j | ord c < 0x10000 = i
| otherwise = i + 1
\end{code}
LiquidHaskell happily accepts our revised `mapAccumL`, as did the `text`
maintainers.
We hope you've enjoyed this whirlwind tour of using LiquidHaskell to verify
production code, we have many more examples in the `benchmarks` folder of
our GitHub repository for the intrepid reader.