{-# LANGUAGE MagicHash #-} module Language.Haskell.Liquid.Prelude where ------------------------------------------------------------------- --------------------------- Arithmetic ---------------------------- ------------------------------------------------------------------- {-@ assume plus :: x:{v:Int | true } -> y:{v:Int | true} -> {v:Int | v = x + y} @-} {-@ assume minus :: x:{v:Int | true } -> y:{v:Int | true} -> {v:Int | v = x - y} @-} {-@ assume times :: x:Int -> y:Int -> Int @-} {-@ assume eq :: x:Int -> y:Int -> {v:Bool | ((v) <=> x = y)} @-} {-@ assume neq :: x:Int -> y:Int -> {v:Bool | ((v) <=> x != y)} @-} {-@ assume leq :: x:Int -> y:Int -> {v:Bool | ((v) <=> x <= y)} @-} {-@ assume geq :: x:Int -> y:Int -> {v:Bool | ((v) <=> x >= y)} @-} {-@ assume lt :: x:Int -> y:Int -> {v:Bool | ((v) <=> x < y)} @-} {-@ assume gt :: x:Int -> y:Int -> {v:Bool | ((v) <=> x > y)} @-} {-# NOINLINE plus #-} plus :: Int -> Int -> Int plus x y = x + y {-# NOINLINE minus #-} minus :: Int -> Int -> Int minus x y = x - y {-# NOINLINE times #-} times :: Int -> Int -> Int times x y = x * y ------------------------------------------------------------------- --------------------------- Comparisons --------------------------- ------------------------------------------------------------------- {-# NOINLINE eq #-} eq :: Int -> Int -> Bool eq x y = x == y {-# NOINLINE neq #-} neq :: Int -> Int -> Bool neq x y = not (x == y) {-# NOINLINE leq #-} leq :: Int -> Int -> Bool leq x y = x <= y {-# NOINLINE geq #-} geq :: Int -> Int -> Bool geq x y = x >= y {-# NOINLINE lt #-} lt :: Int -> Int -> Bool lt x y = x < y {-# NOINLINE gt #-} gt :: Int -> Int -> Bool gt x y = x > y ------------------------------------------------------------------- ------------------------ Specifications --------------------------- ------------------------------------------------------------------- {-@ assume liquidAssertB :: x:{v:Bool | v} -> {v: Bool | v} @-} {-# NOINLINE liquidAssertB #-} liquidAssertB :: Bool -> Bool liquidAssertB b = b {-@ assume liquidAssert :: {v:Bool | v} -> a -> a @-} {-# NOINLINE liquidAssert #-} liquidAssert :: Bool -> a -> a liquidAssert _ x = x {-@ assume liquidAssume :: b:Bool -> a -> {v: a | b} @-} {-# NOINLINE liquidAssume #-} liquidAssume :: Bool -> a -> a liquidAssume b x = if b then x else error "liquidAssume fails" {-@ assume liquidAssumeB :: forall <p :: a -> Bool>. (a<p> -> {v:Bool| v}) -> a -> a<p> @-} liquidAssumeB :: (a -> Bool) -> a -> a liquidAssumeB p x | p x = x | otherwise = error "liquidAssumeB fails" {-# NOINLINE unsafeError #-} unsafeError :: String -> a unsafeError = error {-@ assume liquidError :: {v:String | 0 = 1} -> a @-} {-# NOINLINE liquidError #-} liquidError :: String -> a liquidError = error {-@ assume crash :: forall a . x:{v:Bool | v} -> a @-} {-# NOINLINE crash #-} crash :: Bool -> a crash = undefined {-# NOINLINE force #-} force :: Bool force = True {-# NOINLINE choose #-} choose :: Int -> Int choose = undefined ------------------------------------------------------------------- ----------- Modular Arithmetic Wrappers --------------------------- ------------------------------------------------------------------- -- tedium because fixpoint doesnt want to deal with (x mod y) only (x mod c) {-@ assume isEven :: x:Int -> {v:Bool | ((v) <=> ((x mod 2) = 0))} @-} {-# NOINLINE isEven #-} isEven :: Int -> Bool isEven x = x `mod` 2 == 0 {-@ assume isOdd :: x:Int -> {v:Bool | ((v) <=> ((x mod 2) = 1))} @-} {-# NOINLINE isOdd #-} isOdd :: Int -> Bool isOdd x = x `mod` 2 == 1 ----------------------------------------------------------------------------------------------- {-@ safeZipWith :: (a -> b -> c) -> xs : [a] -> ys:{v:[b] | len v = len xs} -> {v : [c] | len v = len xs } @-} safeZipWith :: (a->b->c) -> [a]->[b]->[c] safeZipWith f (a:as) (b:bs) = f a b : safeZipWith f as bs safeZipWith _ [] [] = [] safeZipWith _ _ _ = error "safeZipWith: cannot happen!" {-@ (==>) :: p:Bool -> q:Bool -> {v:Bool | v <=> (p => q)} @-} infixr 8 ==> (==>) :: Bool -> Bool -> Bool False ==> False = True False ==> True = True True ==> True = True True ==> False = False