Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell98 |
Documentation
elim :: Cstr a -> Cstr a Source #
elim solves all of the KVars in a Cstr (assuming no cycles...) >>> elim . qCstr . fst $ parseFromFile hornP "testshornpos/test00.smt2" (and (forall ((x int) (x > 0)) (forall ((y int) (y > x)) (forall ((v int) (v == x + y)) ((v > 0)))))) >>> elim . qCstr . fst $ parseFromFile hornP "testshornpos/test01.smt2" (and (forall ((x int) (x > 0)) (and (forall ((y int) (y > x)) (forall ((v int) (v == x + y)) ((v > 0)))) (forall ((z int) (z > 100)) (forall ((v int) (v == x + z)) ((v > 100))))))) >>> elim . qCstr . fst $ parseFromFile hornP "testshornpos/test02.smt2" (and (forall ((x int) (x > 0)) (and (forall ((y int) (y > x + 100)) (forall ((v int) (v == x + y)) ((true)))) (forall ((y int) (y > x + 100)) (forall ((v int) (v == x + y)) (forall ((z int) (z == v)) (forall ((v int) (v == x + z)) ((v > 100)))))))))
elimPis :: [Symbol] -> (Cstr a, Cstr a) -> (Cstr a, Cstr a) Source #
>>>
(q, opts) <- parseFromFile hornP "tests/horn/pos/ebind01.smt2"
>>>
let (Just noside, Just side) = split $ pokec $ qCstr q
>>>
F.pprint $ elimPis ["x1"] (noside, side )
(forall ((m int) (true)) (forall ((x1 int) (forall [v : int] . v == m + 1 => v == x1 && forall [v : int] . v == x1 + 1 => v == 2 + m)) (and (forall ((v int) (v == m + 1)) (((v == x1)))) (forall ((v int) (v == x1 + 1)) (((v == 2 + m))))))) : (forall ((m int) (true)) (exists ((x1 int) (true)) ((forall [v : int] . v == m + 1 => v == x1 && forall [v : int] . v == x1 + 1 => v == 2 + m))))
>>>
(q, opts) <- parseFromFile hornP "tests/horn/pos/ebind02.smt2"
>>>
let (Just noside, Just side) = split $ pokec $ qCstr q
>>>
F.pprint $ elimPis ["x1"] (noside, side )
(forall ((m int) (true)) (forall ((z int) (z == m - 1)) (and (forall ((v1 int) (v1 == z + 2)) ((k v1))) (forall ((x1 int) (forall [v2 : int] . $k[fix$36$$954$arg$36$k$35$1:=v2] => v2 == x1 && forall [v3 : int] . v3 == x1 + 1 => v3 == m + 2)) (and (forall ((v2 int) (k v2)) (((v2 == x1)))) (forall ((v3 int) (v3 == x1 + 1)) (((v3 == m + 2))))))))) : (forall ((m int) (true)) (forall ((z int) (z == m - 1)) (exists ((x1 int) (true)) ((forall [v2 : int] . $k[fix$36$$954$arg$36$k$35$1:=v2] => v2 == x1 && forall [v3 : int] . v3 == x1 + 1 => v3 == m + 2)))))
solveEbs :: PPrint a => Config -> Query a -> IO (Query a) Source #
solveEbs takes a query and returns a query with the ebinds solved out
it has some preconditions
- pi -> k -> pi structure. That is, there are no cycles, and while ks
can depend on other ks, pis cannot directly depend on other pis
- predicate for exists binder is true
. (TODO: is this pre stale?)
cstrToExpr :: Cstr a -> Expr Source #