{-# LANGUAGE CPP #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE PatternGuards #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE EmptyDataDecls #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE ExistentialQuantification #-} #ifdef TRUSTWORTHY {-# LANGUAGE Trustworthy #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Control.Lens.Internal.Zipper -- Copyright : (C) 2012-2013 Edward Kmett -- License : BSD-style (see the file LICENSE) -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : experimental -- Portability : non-portable -- -- This module provides internal types and functions used in the implementation -- of @Control.Lens.Zipper@. You shouldn't need to import it directly, and the -- exported types can be used to break 'Zipper' invariants. -- ---------------------------------------------------------------------------- module Control.Lens.Internal.Zipper where import Control.Applicative import Control.Category ((>>>)) import Control.Monad import Control.Lens.Getter import Control.Lens.Indexed import Control.Lens.Internal.Context import Control.Lens.Internal.Indexed import Control.Lens.Lens import Control.Lens.Setter import Control.Lens.Traversal import Control.Lens.Type import Data.Foldable import Data.Functor.Apply import Data.Maybe import Data.Monoid import Data.Profunctor.Unsafe -- $setup -- >>> :set -XNoOverloadedStrings -- >>> import Control.Lens -- >>> import Data.Char {-# ANN module "HLint: ignore Use foldl" #-} ------------------------------------------------------------------------------ -- * Jacket ------------------------------------------------------------------------------ -- | A 'Jacket' is used to store the contents of a 'Traversal' in a way -- that we do not have to re-asocciate the elements. This enables us to -- more gracefully deal with infinite traversals. data Jacket i a = Ap Int -- size Bool -- left-to-right null check Bool -- right-to-left null check (Last i) (Jacket i a) -- left (Jacket i a) -- right | Leaf i a | Pure deriving Show -- | Return the number of children in a jacket size :: Jacket i a -> Int size (Ap s _ _ _ _ _) = s size Leaf{} = 1 size Pure = 0 {-# INLINE size #-} -- | This is an internal function used to check from left-to-right if a 'Jacket' has any 'Leaf' nots or not. nullLeft :: Jacket i a -> Bool nullLeft (Ap _ nl _ _ _ _) = nl nullLeft (Leaf _ _) = False nullLeft Pure = True {-# INLINE nullLeft #-} -- | This is an internal function used to check from right-to-left if a 'Jacket' has any 'Leaf' nots or not. nullRight :: Jacket i a -> Bool nullRight (Ap _ _ nr _ _ _) = nr nullRight (Leaf _ _) = False nullRight Pure = True {-# INLINE nullRight #-} -- | This is used to extract the maximal key from a 'Jacket'. This is used by 'moveTo' and 'moveToward' to -- seek specific keys, borrowing the asympotic guarantees of the original structure in many cases! maximal :: Jacket i a -> Last i maximal (Ap _ _ _ li _ _) = li maximal (Leaf i _) = Last (Just i) maximal Pure = Last Nothing {-# INLINE maximal #-} instance Functor (Jacket i) where fmap f (Ap m nl nr li l r) = Ap m nl nr li (fmap f l) (fmap f r) fmap f (Leaf i a) = Leaf i (f a) fmap _ Pure = Pure {-# INLINE fmap #-} instance Foldable (Jacket i) where foldMap f (Ap _ _ _ _ l r) = foldMap f l `mappend` foldMap f r foldMap f (Leaf _ a) = f a foldMap _ Pure = mempty {-# INLINE foldMap #-} instance Traversable (Jacket i) where traverse f (Ap m nl nr li l r) = Ap m nl nr li <$> traverse f l <*> traverse f r traverse f (Leaf i a) = Leaf i <$> f a traverse _ Pure = pure Pure {-# INLINE traverse #-} instance FunctorWithIndex i (Jacket i) where imap f = go where go (Ap m nl nr li l r) = Ap m nl nr li (go l) (go r) go (Leaf i a) = Leaf i (f i a) go Pure = Pure {-# INLINE imap #-} instance FoldableWithIndex i (Jacket i) where ifoldMap f = go where go (Ap _ _ _ _ l r) = go l `mappend` go r go (Leaf i a) = f i a go Pure = mempty {-# INLINE ifoldMap #-} instance TraversableWithIndex i (Jacket i) where itraverse f = go where go (Ap m nl nr li l r) = Ap m nl nr li <$> go l <*> go r go (Leaf i a) = Leaf i <$> f i a go Pure = pure Pure {-# INLINE itraverse #-} -- | This is an illegal 'Monoid'. instance Monoid (Jacket i a) where mempty = Pure {-# INLINE mempty #-} mappend l r = Ap (size l + size r) (nullLeft l && nullLeft r) (nullRight r && nullRight l) (maximal l <> maximal r) l r {-# INLINE mappend #-} -- | Construct a 'Jacket' from a 'Bazaar' jacketIns :: Bazaar (Indexed i) a b t -> Jacket i a jacketIns (Bazaar bz) = runAccessor $ bz $ Indexed (\i -> Accessor #. Leaf i) {-# INLINE jacketIns #-} ------------------------------------------------------------------------------ -- * Flow ------------------------------------------------------------------------------ -- | Once we've updated a 'Zipper' we need to put the values back into the original -- shape. 'Flow' is an illegal 'Applicative' that is used to put the values back. newtype Flow i b a = Flow { runFlow :: Jacket i b -> a } instance Functor (Flow i b) where fmap f (Flow g) = Flow (f . g) {-# INLINE fmap #-} instance Apply (Flow i b) where (<.>) = (<*>) {- INLINE (<.>) #-} -- | This is an illegal 'Applicative'. instance Applicative (Flow i b) where pure a = Flow (const a) {-# INLINE pure #-} Flow mf <*> Flow ma = Flow $ \ s -> case s of Ap _ _ _ _ l r -> mf l (ma r) _ -> mf s (ma s) {-# INLINE (<*>) #-} -- | Given a 'Bazaar' and a 'Jacket' build from that 'Bazaar' with 'jacketIns', -- refill the 'Bazaar' with its new contents. jacketOuts :: Bazaar (Indexed i) a b t -> Jacket j b -> t jacketOuts bz = runFlow $ runBazaar bz $ Indexed $ \ _ _ -> Flow $ \ t -> case t of Leaf _ a -> a _ -> error "jacketOuts: wrong shape" {-# INLINE jacketOuts #-} -- | This is only a valid 'Lens' if you don't change the shape of the 'Jacket'! jacket :: AnIndexedTraversal i s t a b -> Lens s t (Jacket i a) (Jacket j b) jacket l f s = jacketOuts bz <$> f (jacketIns bz) where bz = l sell s {-# INLINE jacket #-} ------------------------------------------------------------------------------ -- * Paths ------------------------------------------------------------------------------ -- | A 'Path' into a 'Jacket' that ends at a 'Leaf'. data Path i a = ApL Int Bool Bool (Last i) !(Path i a) !(Jacket i a) | ApR Int Bool Bool (Last i) !(Jacket i a) !(Path i a) | Start deriving Show instance Functor (Path i) where fmap f (ApL m nl nr li p q) = ApL m nl nr li (fmap f p) (fmap f q) fmap f (ApR m nl nr li p q) = ApR m nl nr li (fmap f p) (fmap f q) fmap _ Start = Start {-# INLINE fmap #-} -- | Calculate the absolute position of the 'Leaf' targeted by a 'Path'. -- -- This can be quite expensive for right-biased traversals such as you -- receive from a list. offset :: Path i a -> Int offset Start = 0 offset (ApL _ _ _ _ q _) = offset q offset (ApR _ _ _ _ l q) = size l + offset q {-# INLINE offset #-} -- | Return the total number of children in the 'Jacket' by walking the -- 'Path' to the root. pathsize :: Path i a -> Int pathsize = go 1 where go n Start = n go _ (ApL n _ _ _ p _) = go n p go _ (ApR n _ _ _ _ p) = go n p {-# INLINE pathsize #-} -- * Recursion -- -- For several operations, we unroll the first step of the recursion (or part -- of it) so GHC can inline better. There are two specific cases that we care -- about: The "lens case", where the entire tree is just (Leaf (Identity x)), and the -- "list case", where the traversal tree is right-biased, as in (Ap (Leaf (Identity x)) -- (Ap (Leaf (Identity y)) ...)). It should be safe to delete any of these cases. -- | Reconstruct a 'Jacket' from a 'Path'. recompress :: Path i a -> i -> a -> Jacket i a recompress Start i a = Leaf i a -- Unrolled: The lens case. recompress (ApL m _ _ li Start r) i a = Ap m False False li (Leaf i a) r -- Unrolled: The list case. In particular, a right-biased tree that we haven't moved rightward in. recompress p i a = go p (Leaf i a) where go Start q = q go (ApL m _ _ li q r) l = go q (Ap m False False li l r) go (ApR m _ _ li l q) r = go q (Ap m False False li l r) {-# INLINE recompress #-} -- | Walk down the tree to the leftmost child. startl :: Path i a -> Jacket i a -> r -> (Path i a -> i -> a -> r) -> r startl p0 (Leaf i a) _ kp = kp p0 i a -- Unrolled: The lens case. startl p0 (Ap m nl nr li (Leaf i a) r) _ kp = kp (ApL m nl nr li p0 r) i a -- Unrolled: The list case. (Is this one a good idea?) startl p0 c0 kn kp = go p0 c0 where go p (Ap m nl nr li l r) | nullLeft l = go (ApR m nl nr li Pure p) r | otherwise = go (ApL m nl nr li p r) l go p (Leaf i a) = kp p i a go _ Pure = kn {-# INLINE startl #-} -- | Walk down the tree to the rightmost child. startr :: Path i a -> Jacket i a -> r -> (Path i a -> i -> a -> r) -> r startr p0 (Leaf i a) _ kp = kp p0 i a -- Unrolled: The lens case. startr p0 c0 kn kp = go p0 c0 where go p (Ap m nl nr li l r) | nullRight r = go (ApL m nl nr li p Pure) l | otherwise = go (ApR m nl nr li l p) r go p (Leaf i a) = kp p i a go _ Pure = kn {-# INLINE startr #-} -- | Move left one 'Leaf'. movel :: Path i a -> Jacket i a -> r -> (Path i a -> i -> a -> r) -> r movel p0 c0 kn kp = go p0 c0 where go Start _ = kn go (ApR m _ _ li l q) r | nullRight l = go q (Ap m False False li l Pure) | otherwise = startr (ApL m False False li q r) l kn kp go (ApL m _ _ li p r) l = go p (Ap m False False li l r) {-# INLINE movel #-} -- | Move right one 'Leaf'. mover :: Path i a -> Jacket i a -> r -> (Path i a -> i -> a -> r) -> r mover p0 c0 kn kp = go p0 c0 where go Start _ = kn go (ApL m _ _ li q r) l | nullLeft r = go q (Ap m False False li Pure r) | otherwise = startl (ApR m False False li l q) r kn kp go (ApR m _ _ li l p) r = go p (Ap m False False li l r) {-# INLINE mover #-} ----------------------------------------------------------------------------- -- * Zippers ----------------------------------------------------------------------------- -- | This is used to represent the 'Top' of the 'Zipper'. -- -- Every 'Zipper' starts with 'Top'. -- -- /e.g./ @'Top' ':>>' a@ is the type of the trivial 'Zipper'. data Top -- | This is the type of a 'Zipper'. It visually resembles a \"breadcrumb trail\" as -- used in website navigation. Each breadcrumb in the trail represents a level you -- can move up to. -- -- This type operator associates to the left, so you can use a type like -- -- @'Top' ':>>' ('String','Double') ':>>' 'String' ':>>' 'Char'@ -- -- to represent a 'Zipper' from @('String','Double')@ down to 'Char' that has an intermediate -- crumb for the 'String' containing the 'Char'. -- -- You can construct a 'Zipper' into *any* data structure with 'zipper'. -- -- You can repackage up the contents of a 'Zipper' with 'rezip'. -- -- >>> rezip $ zipper 42 -- 42 -- -- The combinators in this module provide lot of things you can do to the -- 'Zipper' while you have it open. -- -- Note that a value of type @h ':>' s ':>' a@ doesn't actually contain a value -- of type @h ':>' s@ -- as we descend into a level, the previous level is -- unpacked and stored in 'Coil' form. Only one value of type @_ ':>' _@ exists -- at any particular time for any particular 'Zipper'. data Zipper h i a = Ord i => Zipper !(Coil h i a) Int !Int !(Path i a) i a -- Top :>> Map String Int :> Int :@ String :>> Bool infixr 9 :@ -- | An empty data type, used to represent the pairing of a position in -- a 'Zipper' with an index. See ':>'. data (:@) a i infixl 8 :> -- | This type family represents a 'Zipper' with the @p@ variable -- abstracting over the position and the index, in terms of ':@'. You -- can visually see it in type signatures as: -- -- @ -- h ':>' (a ':@' i) = 'Zipper' h i a -- @ -- type family (:>) h p type instance h :> (a :@ i) = Zipper h i a infixl 8 :>> -- | Many zippers are indexed by Int keys. This type alias is convenient for reducing syntactic noise for talking about these boring indices. type h :>> a = Zipper h Int a -- | This represents the type a 'Zipper' will have when it is fully 'Zipped' back up. type family Zipped h a type instance Zipped Top a = a type instance Zipped (Zipper h i a) s = Zipped h a -- | A 'Coil' is a linked list of the levels above the current one. The length -- of a 'Coil' is known at compile time. -- -- This is part of the internal structure of a 'Zipper'. You shouldn't need to manipulate this directly. #ifndef HLINT data Coil t i a where Coil :: Coil Top Int a Snoc :: Ord i => !(Coil h j s) -> AnIndexedTraversal' i s a -> Int -> !Int -> !(Path j s) -> j -> (Jacket i a -> s) -> Coil (Zipper h j s) i a #endif -- | This 'Lens' views the current target of the 'Zipper'. focus :: IndexedLens' i (Zipper h i a) a focus f (Zipper h t o p i a) = Zipper h t o p i <$> indexed f i a {-# INLINE focus #-} -- | Construct a 'Zipper' that can explore anything, and start it at the 'Top'. zipper :: a -> Top :>> a zipper = Zipper Coil 0 0 Start 0 {-# INLINE zipper #-} -- | Return the index of the focus. focalPoint :: Zipper h i a -> i focalPoint (Zipper _ _ _ _ i _) = i {-# INLINE focalPoint #-} -- | Return the index into the current 'Traversal' within the current level of the 'Zipper'. -- -- @'jerkTo' ('tooth' l) l = 'Just'@ -- -- Mnemonically, zippers have a number of 'teeth' within each level. This is which 'tooth' you are currently at. -- -- This is based on ordinal position regardless of the underlying index type. It may be excessively expensive for a list. -- -- 'focalPoint' may be much cheaper if you have a 'Traversal' indexed by ordinal position! tooth :: Zipper h i a -> Int tooth (Zipper _ t o _ _ _) = t + o {-# INLINE tooth #-} -- | Move the 'Zipper' 'upward', closing the current level and focusing on the parent element. -- -- NB: Attempts to move upward from the 'Top' of the 'Zipper' will fail to typecheck. -- upward :: Ord j => h :> s:@j :> a:@i -> h :> s:@j upward (Zipper (Snoc h _ t o p j k) _ _ q i x) = Zipper h t o p j $ k $ recompress q i x {-# INLINE upward #-} -- | Jerk the 'Zipper' one 'tooth' to the 'rightward' within the current 'Lens' or 'Traversal'. -- -- Attempts to move past the start of the current 'Traversal' (or trivially, the current 'Lens') -- will return 'Nothing'. -- -- >>> isNothing $ zipper "hello" & rightward -- True -- -- >>> zipper "hello" & fromWithin traverse & rightward <&> view focus -- 'e' -- -- >>> zipper "hello" & fromWithin traverse & rightward <&> focus .~ 'u' <&> rezip -- "hullo" -- -- >>> rezip $ zipper (1,2) & fromWithin both & tug rightward & focus .~ 3 -- (1,3) rightward :: MonadPlus m => h :> a:@i -> m (h :> a:@i) rightward (Zipper h t o p i a) = mover p (Leaf i a) mzero $ \q j b -> return $ Zipper h t (o + 1) q j b where {-# INLINE rightward #-} -- | Jerk the 'Zipper' 'leftward' one 'tooth' within the current 'Lens' or 'Traversal'. -- -- Attempts to move past the end of the current 'Traversal' (or trivially, the current 'Lens') -- will return 'Nothing'. -- -- >>> isNothing $ zipper "hello" & leftward -- True -- >>> isNothing $ zipper "hello" & within traverse >>= leftward -- True -- -- >>> zipper "hello" & within traverse <&> tug leftward -- Just 'h' -- -- >>> zipper "hello" & fromWithin traverse & tug rightward & tug leftward & view focus -- 'h' leftward :: MonadPlus m => h :> a:@i -> m (h :> a:@i) leftward (Zipper h t o p i a) = movel p (Leaf i a) mzero $ \q j b -> return $ Zipper h t (o - 1) q j b {-# INLINE leftward #-} -- | Move to the leftmost position of the current 'Traversal'. -- -- This is just a convenient alias for @'farthest' 'leftward'@. -- -- >>> zipper "hello" & fromWithin traverse & leftmost & focus .~ 'a' & rezip -- "aello" leftmost :: a :> b:@i -> a :> b:@i leftmost (Zipper h _ _ p i a) = startl Start (recompress p i a) (error "leftmost: bad Jacket structure") (Zipper h 0 0) {-# INLINE leftmost #-} -- | Move to the rightmost position of the current 'Traversal'. -- -- This is just a convenient alias for @'farthest' 'rightward'@. -- -- >>> zipper "hello" & fromWithin traverse & rightmost & focus .~ 'y' & leftmost & focus .~ 'j' & rezip -- "jelly" rightmost :: a :> b:@i -> a :> b:@i rightmost (Zipper h _ _ p i a) = startr Start (recompress p i a) (error "rightmost: bad Jacket structure") (\q -> Zipper h (offset q) 0 q) {-# INLINE rightmost #-} -- | This allows you to safely 'tug' 'leftward' or 'tug' 'rightward' on a -- 'Zipper'. This will attempt the move, and stay where it was if it fails. -- -- The more general signature allows its use in other circumstances, however. -- -- @'tug' f x ≡ 'fromMaybe' a (f a)@ -- -- >>> fmap rezip $ zipper "hello" & within traverse <&> tug leftward <&> focus .~ 'j' -- "jello" -- -- >>> fmap rezip $ zipper "hello" & within traverse <&> tug rightward <&> focus .~ 'u' -- "hullo" tug :: (a -> Maybe a) -> a -> a tug f a = fromMaybe a (f a) {-# INLINE tug #-} -- | This allows you to safely @'tug' 'leftward'@ or @'tug' 'rightward'@ -- multiple times on a 'Zipper', moving multiple steps in a given direction -- and stopping at the last place you couldn't move from. This lets you safely -- move a 'Zipper', because it will stop at either end. -- -- >>> fmap rezip $ zipper "stale" & within traverse <&> tugs rightward 2 <&> focus .~ 'y' -- "style" -- -- >>> rezip $ zipper "want" & fromWithin traverse & tugs rightward 2 & focus .~ 'r' & tugs leftward 100 & focus .~ 'c' -- "cart" tugs :: (a -> Maybe a) -> Int -> a -> a tugs f n0 | n0 < 0 = error "tugs: negative tug count" | otherwise = go n0 where go 0 a = a go n a = maybe a (go (n - 1)) (f a) {-# INLINE tugs #-} -- | Move in a direction as far as you can go, then stop there. -- -- This repeatedly applies a function until it returns 'Nothing', and then returns the last answer. -- -- >>> fmap rezip $ zipper ("hello","world") & downward _1 & within traverse <&> rightmost <&> focus .~ 'a' -- ("hella","world") -- -- >>> rezip $ zipper ("hello","there") & fromWithin (both.traverse) & rightmost & focus .~ 'm' -- ("hello","therm") farthest :: (a -> Maybe a) -> a -> a farthest f = go where go a = maybe a go (f a) {-# INLINE farthest #-} -- | This allows for you to repeatedly pull a 'Zipper' in a given direction, failing if it falls off the end. -- -- >>> isNothing $ zipper "hello" & within traverse >>= jerks rightward 10 -- True -- -- >>> fmap rezip $ zipper "silly" & within traverse >>= jerks rightward 3 <&> focus .~ 'k' -- "silky" jerks :: Monad m => (a -> m a) -> Int -> a -> m a jerks f n0 | n0 < 0 = fail "jerks: negative jerk count" | otherwise = go n0 where go 0 a = return a go n a = f a >>= go (n - 1) {-# INLINE jerks #-} -- | Returns the number of siblings at the current level in the 'Zipper'. -- -- @'teeth' z '>=' 1@ -- -- /NB:/ If the current 'Traversal' targets an infinite number of elements then this may not terminate. -- -- This is also a particularly expensive operation to perform on an unbalanced tree. -- -- >>> zipper ("hello","world") & teeth -- 1 -- -- >>> zipper ("hello","world") & fromWithin both & teeth -- 2 -- -- >>> zipper ("hello","world") & downward _1 & teeth -- 1 -- -- >>> zipper ("hello","world") & downward _1 & fromWithin traverse & teeth -- 5 -- -- >>> zipper ("hello","world") & fromWithin (_1.traverse) & teeth -- 5 -- -- >>> zipper ("hello","world") & fromWithin (both.traverse) & teeth -- 10 teeth :: h :> a:@i -> Int teeth (Zipper _ _ _ p _ _) = pathsize p {-# INLINE teeth #-} -- | Move the 'Zipper' horizontally to the element in the @n@th position in the -- current level, absolutely indexed, starting with the 'farthest' 'leftward' as @0@. -- -- This returns 'Nothing' if the target element doesn't exist. -- -- @'jerkTo' n ≡ 'jerks' 'rightward' n '.' 'farthest' 'leftward'@ -- -- >>> isNothing $ zipper "not working." & jerkTo 20 -- True -- >>> isNothing $ zipper "not working." & fromWithin traverse & jerkTo 20 -- True -- -- >>> fmap rezip $ zipper "not working" & within traverse >>= jerkTo 2 <&> focus .~ 'w' -- Just "now working" jerkTo :: MonadPlus m => Int -> (h :> a:@i) -> m (h :> a:@i) jerkTo n z = case compare k n of LT -> jerks rightward (n - k) z EQ -> return z GT -> jerks leftward (k - n) z where k = tooth z {-# INLINE jerkTo #-} -- | Move the 'Zipper' horizontally to the element in the @n@th position of the -- current level, absolutely indexed, starting with the 'farthest' 'leftward' as @0@. -- -- If the element at that position doesn't exist, then this will clamp to the range @0 '<=' n '<' 'teeth'@. -- -- @'tugTo' n ≡ 'tugs' 'rightward' n '.' 'farthest' 'leftward'@ -- -- >>> rezip $ zipper "not working." & fromWithin traverse & tugTo 100 & focus .~ '!' & tugTo 1 & focus .~ 'u' -- "nut working!" tugTo :: Int -> h :> a:@i -> h :> a:@i tugTo n z = case compare k n of LT -> tugs rightward (n - k) z EQ -> z GT -> tugs leftward (k - n) z where k = tooth z {-# INLINE tugTo #-} -- | Move towards a particular index in the current 'Traversal'. moveToward :: i -> h :> a:@i -> h :> a:@i moveToward i z@(Zipper h _ _ p0 j s0) | i == j = z | otherwise = go Start (recompress p0 j s0) where go _ Pure = z go p (Ap m nl nr li l r) | Last (Just k) <- maximal l, k >= i = go (ApL m nl nr li p r) l | otherwise = go (ApR m nl nr li l p) r go p (Leaf k a) = Zipper h (offset p) 0 p k a {-# INLINE moveToward #-} -- | Move horizontally to a particular index @i@ in the current -- 'Traversal'. In the case of simple zippers, the index is 'Int' and -- we can move between traversals fairly easily: -- -- >>> zipper (42, 32) & fromWithin both & moveTo 0 <&> view focus -- 42 -- -- >>> zipper (42, 32) & fromWithin both & moveTo 1 <&> view focus -- 32 -- moveTo :: MonadPlus m => i -> h :> a:@i -> m (h :> a:@i) moveTo i z = case moveToward i z of z'@(Zipper _ _ _ _ j _) | i == j -> return z' | otherwise -> mzero {-# INLINE moveTo #-} -- | Construct an 'IndexedLens' from 'ALens' where the index is fixed to @0@. lensed :: ALens' s a -> IndexedLens' Int s a lensed l f = cloneLens l (indexed f (0 :: Int)) {-# INLINE lensed #-} -- | Step down into a 'Lens'. This is a constrained form of 'fromWithin' for when you know -- there is precisely one target that can never fail. -- -- @ -- 'downward' :: 'Lens'' s a -> (h ':>' s) -> h ':>' s ':>' a -- 'downward' :: 'Iso'' s a -> (h ':>' s) -> h ':>' s ':>' a -- @ downward :: forall j h s a. ALens' s a -> h :> s:@j -> h :> s:@j :>> a downward l (Zipper h t o p j s) = Zipper (Snoc h l' t o p j go) 0 0 Start 0 (s^.l') where l' :: IndexedLens' Int s a l' = lensed l go (Leaf _ b) = set l' b s go _ = error "downward: rezipping" {-# INLINE downward #-} -- | Step down into a 'IndexedLens'. This is a constrained form of 'ifromWithin' for when you know -- there is precisely one target that can never fail. -- -- @ -- 'idownward' :: 'IndexedLens'' i s a -> (h ':>' s:\@j) -> h ':>' s:\@j ':>' a:\@i -- @ idownward :: forall i j h s a. Ord i => AnIndexedLens' i s a -> h :> s:@j -> h :> s:@j :> a:@i idownward l (Zipper h t o p j s) = Zipper (Snoc h l' t o p j go) 0 0 Start i a where l' :: IndexedLens' i s a l' = cloneIndexedLens l (i, a) = iview l' s go (Leaf _ b) = set l' b s go _ = error "idownward: rezipping" {-# INLINE idownward #-} -- | Step down into the 'leftmost' entry of a 'Traversal'. -- -- @ -- 'within' :: 'Traversal'' s a -> (h ':>' s:\@j) -> 'Maybe' (h ':>' s:\@j ':>>' a) -- 'within' :: 'Prism'' s a -> (h ':>' s:\@j) -> 'Maybe' (h ':>' s:\@j ':>>' a) -- 'within' :: 'Lens'' s a -> (h ':>' s:\@j) -> 'Maybe' (h ':>' s:\@j ':>>' a) -- 'within' :: 'Iso'' s a -> (h ':>' s:\@j) -> 'Maybe' (h ':>' s:\@j ':>>' a) -- @ -- -- @ -- 'within' :: 'MonadPlus' m => 'ATraversal'' s a -> (h ':>' s:\@j) -> m (h ':>' s:\@j ':>>' a) -- @ within :: MonadPlus m => LensLike' (Indexing (Bazaar' (Indexed Int) a)) s a -> (h :> s:@j) -> m (h :> s:@j :>> a) within = iwithin . indexing {-# INLINE within #-} -- | Step down into the 'leftmost' entry of an 'IndexedTraversal'. -- -- /Note:/ The index is assumed to be ordered and must increase monotonically or else you cannot (safely) 'moveTo' or 'moveToward' or use tapes. -- -- @ -- 'iwithin' :: 'IndexedTraversal'' i s a -> (h ':>' s:\@j) -> 'Maybe' (h ':>' s:\@j ':>' a:\@i) -- 'iwithin' :: 'IndexedLens'' i s a -> (h ':>' s:\@j) -> 'Maybe' (h ':>' s:\@j ':>' a:\@i) -- @ -- -- @ -- 'iwithin' :: 'MonadPlus' m => 'ATraversal'' s a -> (h ':>' s:\@j) -> m (h ':>' s:\@j ':>>' a) -- @ iwithin :: (MonadPlus m, Ord i) => AnIndexedTraversal' i s a -> (h :> s:@j) -> m (h :> s:@j :> a:@i) iwithin l (Zipper h t o p j s) = case jacket l (Context id) s of Context k xs -> startl Start xs mzero $ \q i a -> return $ Zipper (Snoc h l t o p j k) 0 0 q i a {-# INLINE iwithin #-} -- | Step down into every entry of a 'Traversal' simultaneously. -- -- >>> zipper ("hello","world") & withins both >>= leftward >>= withins traverse >>= rightward <&> focus %~ toUpper <&> rezip :: [(String,String)] -- [("hEllo","world"),("heLlo","world"),("helLo","world"),("hellO","world")] -- -- @ -- 'withins' :: 'Traversal'' s a -> (h ':>' s:\@j) -> [h ':>' s:\@j ':>>' a] -- 'withins' :: 'Lens'' s a -> (h ':>' s:\@j) -> [h ':>' s:\@j ':>>' a] -- 'withins' :: 'Iso'' s a -> (h ':>' s:\@j) -> [h ':>' s:\@j ':>>' a] -- @ withins :: MonadPlus m => LensLike' (Indexing (Bazaar' (Indexed Int) a)) s a -> (h :> s:@j) -> m (h :> s:@j :>> a) withins = iwithins . indexing {-# INLINE withins #-} -- | Step down into every entry of an 'IndexedTraversal' simultaneously. -- -- /Note:/ The index is assumed to be ordered and must increase monotonically or else you cannot (safely) 'moveTo' or 'moveToward' or use tapes. -- -- @ -- 'iwithins' :: 'IndexedTraversal'' i s a -> (h ':>' s:\@j) -> [h ':>' s:\@j ':>' a:\@i] -- 'iwithins' :: 'IndexedLens'' i s a -> (h ':>' s:\@j) -> [h ':>' s:\@j ':>' a:\@i] -- @ iwithins :: (MonadPlus m, Ord i) => AnIndexedTraversal' i s a -> (h :> s:@j) -> m (h :> s:@j :> a:@i) iwithins z (Zipper h t o p j s) = case jacket z (Context id) s of Context k xs -> let up = Snoc h z t o p j k go q (Ap m nl nr li l r) = go (ApL m nl nr li q r) l `mplus` go (ApR m nl nr li l q) r go q (Leaf i a) = return $ Zipper up (offset q) 0 q i a go _ Pure = mzero in go Start xs {-# INLINE iwithins #-} -- | Unsafely step down into a 'Traversal' that is /assumed/ to be non-empty. -- -- If this invariant is not met then this will usually result in an error! -- -- @ -- 'fromWithin' :: 'Traversal'' s a -> (h ':>' s:\@j) -> h ':>' s:\@j ':>>' a -- 'fromWithin' :: 'Lens'' s a -> (h ':>' s:\@j) -> h ':>' s:\@j ':>>' a -- 'fromWithin' :: 'Iso'' s a -> (h ':>' s:\@j) -> h ':>' s:\@j ':>>' a -- @ -- -- You can reason about this function as if the definition was: -- -- @ -- 'fromWithin' l ≡ 'fromJust' '.' 'within' l -- @ fromWithin :: LensLike' (Indexing (Bazaar' (Indexed Int) a)) s a -> (h :> s:@j) -> h :> s:@j :>> a fromWithin = ifromWithin . indexing {-# INLINE fromWithin #-} -- | Unsafey step down into an 'IndexedTraversal' that is /assumed/ to be non-empty -- -- If this invariant is not met then this will usually result in an error! -- -- @ -- 'ifromWithin' :: 'IndexedTraversal'' i s a -> (h ':>' s:\@j) -> h ':>' s:\@j ':>' a:\@i -- 'ifromWithin' :: 'IndexedLens'' i s a -> (h ':>' s:\@j) -> h ':>' s:\@j ':>' a:\@i -- @ -- -- You can reason about this function as if the definition was: -- -- @ -- 'fromWithin' l ≡ 'fromJust' '.' 'within' l -- @ ifromWithin :: Ord i => AnIndexedTraversal' i s a -> (h :> s:@j) -> h :> s:@j :> a:@i ifromWithin l (Zipper h t o p j s) = case jacket l (Context id) s of Context k xs -> let up = Snoc h l t o p j k in startl Start xs (Zipper up 0 0 Start (error "fromWithin an empty Traversal") (error "fromWithin an empty Traversal")) (Zipper up 0 0) {-# INLINE ifromWithin #-} -- | This enables us to pull the 'Zipper' back up to the 'Top'. class Zipping h a where recoil :: Coil h i a -> Jacket i a -> Zipped h a instance Zipping Top a where recoil Coil (Leaf _ a) = a recoil Coil _ = error "recoil: expected Leaf" {-# INLINE recoil #-} instance Zipping h s => Zipping (Zipper h i s) a where recoil (Snoc h _ _ _ p i k) as = recoil h $ recompress p i (k as) {-# INLINE recoil #-} -- | Close something back up that you opened as a 'Zipper'. rezip :: Zipping h a => (h :> a:@i) -> Zipped h a rezip (Zipper h _ _ p i a) = recoil h (recompress p i a) {-# INLINE rezip #-} -- | Extract the current 'focus' from a 'Zipper' as a 'Pretext', with access to the current index. focusedContext :: (Indexable i p, Zipping h a) => (h :> a:@i) -> Pretext p a a (Zipped h a) focusedContext (Zipper h t o p i a) = Pretext (\f -> rezip . Zipper h t o p i <$> indexed f i a) {-# INLINE focusedContext #-} ----------------------------------------------------------------------------- -- * Tapes ----------------------------------------------------------------------------- -- | A 'Tape' is a recorded path through the (indexed) 'Traversal' chain of a 'Zipper'. data Tape h i a where Tape :: Track h i a -> i -> Tape h i a -- | Save the current path as as a 'Tape' we can play back later. saveTape :: Zipper h i a -> Tape h i a saveTape (Zipper h _ _ _ i _) = Tape (peel h) i {-# INLINE saveTape #-} -- | Restore ourselves to a previously recorded position precisely. -- -- If the position does not exist, then fail. restoreTape :: MonadPlus m => Tape h i a -> Zipped h a -> m (Zipper h i a) restoreTape (Tape h n) = restoreTrack h >=> moveTo n {-# INLINE restoreTape #-} -- | Restore ourselves to a location near our previously recorded position. -- -- When moving left to right through a 'Traversal', if this will clamp at each -- level to the range @0 '<=' k '<' 'teeth'@, so the only failures will occur -- when one of the sequence of downward traversals find no targets. restoreNearTape :: MonadPlus m => Tape h i a -> Zipped h a -> m (Zipper h i a) restoreNearTape (Tape h n) a = liftM (moveToward n) (restoreNearTrack h a) {-# INLINE restoreNearTape #-} -- | Restore ourselves to a previously recorded position. -- -- This *assumes* that nothing has been done in the meantime to affect the existence of anything on the entire path. -- -- Motions 'leftward' or 'rightward' are clamped, but all traversals included on the 'Tape' are assumed to be non-empty. -- -- Violate these assumptions at your own risk! unsafelyRestoreTape :: Tape h i a -> Zipped h a -> Zipper h i a unsafelyRestoreTape (Tape h n) = unsafelyRestoreTrack h >>> moveToward n {-# INLINE unsafelyRestoreTape #-} ----------------------------------------------------------------------------- -- * Tracks ----------------------------------------------------------------------------- -- | This is used to peel off the path information from a 'Coil' for use when saving the current path for later replay. peel :: Coil h i a -> Track h i a peel Coil = Track peel (Snoc h l _ _ _ i _) = Fork (peel h) i l {-# INLINE peel #-} -- | The 'Track' forms the bulk of a 'Tape'. data Track t i a where Track :: Track Top Int a Fork :: Ord i => Track h j s -> j -> AnIndexedTraversal' i s a -> Track (Zipper h j s) i a -- | Restore ourselves to a previously recorded position precisely. -- -- If the position does not exist, then fail. restoreTrack :: MonadPlus m => Track h i a -> Zipped h a -> m (Zipper h i a) restoreTrack Track = return . zipper restoreTrack (Fork h n l) = restoreTrack h >=> moveTo n >=> iwithin l -- | Restore ourselves to a location near our previously recorded position. -- -- When moving 'leftward' to 'rightward' through a 'Traversal', if this will clamp at each level to the range @0 '<=' k '<' 'teeth'@, -- so the only failures will occur when one of the sequence of downward traversals find no targets. restoreNearTrack :: MonadPlus m => Track h i a -> Zipped h a -> m (Zipper h i a) restoreNearTrack Track = return . zipper restoreNearTrack (Fork h n l) = restoreNearTrack h >=> moveToward n >>> iwithin l -- | Restore ourselves to a previously recorded position. -- -- This *assumes* that nothing has been done in the meantime to affect the existence of anything on the entire 'Path'. -- -- Motions 'leftward' or 'rightward' are clamped, but all traversals included on the 'Tape' are assumed to be non-empty. -- -- Violate these assumptions at your own risk! unsafelyRestoreTrack :: Track h i a -> Zipped h a -> Zipper h i a unsafelyRestoreTrack Track = zipper unsafelyRestoreTrack (Fork h n l) = unsafelyRestoreTrack h >>> moveToward n >>> ifromWithin l