{-# LANGUAGE GADTs #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE TypeFamilies #-} ----------------------------------------------------------------------------- -- | -- Module : Control.Lens.Equality -- Copyright : (C) 2012-13 Edward Kmett -- License : BSD-style (see the file LICENSE) -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : Rank2Types -- ---------------------------------------------------------------------------- module Control.Lens.Equality ( -- * Type Equality Equality, Equality' , AnEquality, AnEquality' , runEq , substEq , mapEq , fromEq , simply -- * Implementation Details , Identical(..) ) where import Control.Lens.Internal.Setter import Control.Lens.Type {-# ANN module "HLint: ignore Use id" #-} {-# ANN module "HLint: ignore Eta reduce" #-} -- $setup -- >>> import Control.Lens ----------------------------------------------------------------------------- -- Equality ----------------------------------------------------------------------------- -- | Provides witness that @(s ~ a, b ~ t)@ holds. data Identical a b s t where Identical :: Identical a b a b -- | When you see this as an argument to a function, it expects an 'Equality'. type AnEquality s t a b = Identical a (Mutator b) a (Mutator b) -> Identical a (Mutator b) s (Mutator t) -- | A 'Simple' 'AnEquality'. type AnEquality' s a = AnEquality s s a a -- | Extract a witness of type 'Equality'. runEq :: AnEquality s t a b -> Identical s t a b runEq l = case l Identical of Identical -> Identical {-# INLINE runEq #-} -- | Substituting types with 'Equality'. substEq :: AnEquality s t a b -> ((s ~ a, t ~ b) => r) -> r substEq l = case runEq l of Identical -> \r -> r {-# INLINE substEq #-} -- | We can use 'Equality' to do substitution into anything. mapEq :: AnEquality s t a b -> f s -> f a mapEq l r = substEq l r {-# INLINE mapEq #-} -- | 'Equality' is symmetric. fromEq :: AnEquality s t a b -> Equality b a t s fromEq l = substEq l id {-# INLINE fromEq #-} -- | This is an adverb that can be used to modify many other 'Lens' combinators to make them require -- simple lenses, simple traversals, simple prisms or simple isos as input. simply :: (Overloaded' p f s a -> r) -> Overloaded' p f s a -> r simply = id {-# INLINE simply #-}