#if __GLASGOW_HASKELL__ >= 707 && __GLASGOW_HASKELL__ < 709
#endif
#define unordered_containers_SAFE MIN_VERSION_unordered_containers(0,2,6)
#define semigroupoids_SAFE (!MIN_VERSION_semigroupoids(5,2,2) || __GLASGOW_HASKELL__ >= 802)
#if __GLASGOW_HASKELL__ >= 710 && unordered_containers_SAFE && semigroupoids_SAFE
#else
#endif
module Algebra.Lattice (
JoinSemiLattice(..), MeetSemiLattice(..), Lattice,
joinLeq, joins1, meetLeq, meets1,
BoundedJoinSemiLattice(..), BoundedMeetSemiLattice(..), BoundedLattice,
joins, meets,
fromBool,
Meet(..), Join(..),
lfp, lfpFrom, unsafeLfp,
gfp, gfpFrom, unsafeGfp,
) where
import Prelude ()
import Prelude.Compat
import qualified Algebra.PartialOrd as PO
import Data.Universe.Class (Finite (..), Universe (..))
import Control.Monad.Zip (MonadZip (..))
import Data.Data (Data, Typeable)
import Data.Hashable (Hashable (..))
import Data.Proxy (Proxy (..))
import Data.Semigroup (All (..), Any (..), Endo (..), Semigroup (..))
import Data.Tagged (Tagged (..))
import Data.Void (Void)
import GHC.Generics (Generic)
import qualified Data.IntMap as IM
import qualified Data.IntSet as IS
import qualified Data.Map as M
import qualified Data.Set as S
import qualified Data.HashMap.Lazy as HM
import qualified Data.HashSet as HS
import Control.Applicative (Const (..))
import Data.Functor.Identity (Identity (..))
import Data.Semigroup.Foldable (Foldable1 (..))
infixr 6 /\
infixr 5 \/
class JoinSemiLattice a where
(\/) :: a -> a -> a
(\/) = join
join :: a -> a -> a
join = (\/)
#if __GLASGOW_HASKELL__ >= 707
#endif
joinLeq :: (Eq a, JoinSemiLattice a) => a -> a -> Bool
joinLeq x y = (x \/ y) == y
class MeetSemiLattice a where
(/\) :: a -> a -> a
(/\) = meet
meet :: a -> a -> a
meet = (/\)
#if __GLASGOW_HASKELL__ >= 707
#endif
meetLeq :: (Eq a, MeetSemiLattice a) => a -> a -> Bool
meetLeq x y = (x /\ y) == x
class (JoinSemiLattice a, MeetSemiLattice a) => Lattice a where
class JoinSemiLattice a => BoundedJoinSemiLattice a where
bottom :: a
joins :: (BoundedJoinSemiLattice a, Foldable f) => f a -> a
joins = getJoin . foldMap Join
joins1 :: (JoinSemiLattice a, Foldable1 f) => f a -> a
joins1 = getJoin . foldMap1 Join
class MeetSemiLattice a => BoundedMeetSemiLattice a where
top :: a
meets :: (BoundedMeetSemiLattice a, Foldable f) => f a -> a
meets = getMeet . foldMap Meet
meets1 :: (MeetSemiLattice a, Foldable1 f) => f a -> a
meets1 = getMeet . foldMap1 Meet
class (Lattice a, BoundedJoinSemiLattice a, BoundedMeetSemiLattice a) => BoundedLattice a where
fromBool :: BoundedLattice a => Bool -> a
fromBool True = top
fromBool False = bottom
instance Ord a => JoinSemiLattice (S.Set a) where
(\/) = S.union
instance Ord a => MeetSemiLattice (S.Set a) where
(/\) = S.intersection
instance Ord a => Lattice (S.Set a)
instance Ord a => BoundedJoinSemiLattice (S.Set a) where
bottom = S.empty
instance (Ord a, Finite a) => BoundedMeetSemiLattice (S.Set a) where
top = S.fromList universeF
instance (Ord a, Finite a) => BoundedLattice (S.Set a)
instance JoinSemiLattice IS.IntSet where
(\/) = IS.union
instance MeetSemiLattice IS.IntSet where
(/\) = IS.intersection
instance Lattice IS.IntSet
instance BoundedJoinSemiLattice IS.IntSet where
bottom = IS.empty
instance (Eq a, Hashable a) => JoinSemiLattice (HS.HashSet a) where
(\/) = HS.union
instance (Eq a, Hashable a) => MeetSemiLattice (HS.HashSet a) where
(/\) = HS.intersection
instance (Eq a, Hashable a) => Lattice (HS.HashSet a)
instance (Eq a, Hashable a) => BoundedJoinSemiLattice (HS.HashSet a) where
bottom = HS.empty
instance (Eq a, Hashable a, Finite a) => BoundedMeetSemiLattice (HS.HashSet a) where
top = HS.fromList universeF
instance (Eq a, Hashable a, Finite a) => BoundedLattice (HS.HashSet a)
instance (Ord k, JoinSemiLattice v) => JoinSemiLattice (M.Map k v) where
(\/) = M.unionWith (\/)
instance (Ord k, MeetSemiLattice v) => MeetSemiLattice (M.Map k v) where
(/\) = M.intersectionWith (/\)
instance (Ord k, Lattice v) => Lattice (M.Map k v) where
instance (Ord k, JoinSemiLattice v) => BoundedJoinSemiLattice (M.Map k v) where
bottom = M.empty
instance (Ord k, Finite k, BoundedMeetSemiLattice v) => BoundedMeetSemiLattice (M.Map k v) where
top = M.fromList (universeF `zip` repeat top)
instance (Ord k, Finite k, BoundedLattice v) => BoundedLattice (M.Map k v) where
instance JoinSemiLattice v => JoinSemiLattice (IM.IntMap v) where
(\/) = IM.unionWith (\/)
instance JoinSemiLattice v => BoundedJoinSemiLattice (IM.IntMap v) where
bottom = IM.empty
instance MeetSemiLattice v => MeetSemiLattice (IM.IntMap v) where
(/\) = IM.intersectionWith (/\)
instance Lattice v => Lattice (IM.IntMap v)
instance (Eq k, Hashable k, JoinSemiLattice v) => JoinSemiLattice (HM.HashMap k v) where
(\/) = HM.unionWith (\/)
instance (Eq k, Hashable k, MeetSemiLattice v) => MeetSemiLattice (HM.HashMap k v) where
(/\) = HM.intersectionWith (/\)
instance (Eq k, Hashable k, JoinSemiLattice v) => BoundedJoinSemiLattice (HM.HashMap k v) where
bottom = HM.empty
instance (Eq k, Hashable k, Lattice v) => Lattice (HM.HashMap k v) where
instance (Eq k, Hashable k, Finite k, BoundedMeetSemiLattice v) => BoundedMeetSemiLattice (HM.HashMap k v) where
top = HM.fromList (universeF `zip` repeat top)
instance (Eq k, Hashable k, Finite k, BoundedLattice v) => BoundedLattice (HM.HashMap k v) where
instance JoinSemiLattice v => JoinSemiLattice (k -> v) where
f \/ g = \x -> f x \/ g x
instance MeetSemiLattice v => MeetSemiLattice (k -> v) where
f /\ g = \x -> f x /\ g x
instance Lattice v => Lattice (k -> v) where
instance BoundedJoinSemiLattice v => BoundedJoinSemiLattice (k -> v) where
bottom = const bottom
instance BoundedMeetSemiLattice v => BoundedMeetSemiLattice (k -> v) where
top = const top
instance BoundedLattice v => BoundedLattice (k -> v) where
instance JoinSemiLattice () where
_ \/ _ = ()
instance BoundedJoinSemiLattice () where
bottom = ()
instance MeetSemiLattice () where
_ /\ _ = ()
instance BoundedMeetSemiLattice () where
top = ()
instance Lattice () where
instance BoundedLattice () where
instance (JoinSemiLattice a, JoinSemiLattice b) => JoinSemiLattice (a, b) where
(x1, y1) \/ (x2, y2) = (x1 \/ x2, y1 \/ y2)
instance (MeetSemiLattice a, MeetSemiLattice b) => MeetSemiLattice (a, b) where
(x1, y1) /\ (x2, y2) = (x1 /\ x2, y1 /\ y2)
instance (Lattice a, Lattice b) => Lattice (a, b) where
instance (BoundedJoinSemiLattice a, BoundedJoinSemiLattice b) => BoundedJoinSemiLattice (a, b) where
bottom = (bottom, bottom)
instance (BoundedMeetSemiLattice a, BoundedMeetSemiLattice b) => BoundedMeetSemiLattice (a, b) where
top = (top, top)
instance (BoundedLattice a, BoundedLattice b) => BoundedLattice (a, b) where
instance JoinSemiLattice Bool where
(\/) = (||)
instance MeetSemiLattice Bool where
(/\) = (&&)
instance Lattice Bool where
instance BoundedJoinSemiLattice Bool where
bottom = False
instance BoundedMeetSemiLattice Bool where
top = True
instance BoundedLattice Bool where
newtype Join a = Join { getJoin :: a }
deriving (Eq, Ord, Read, Show, Bounded, Typeable, Data, Generic)
instance JoinSemiLattice a => Semigroup (Join a) where
Join a <> Join b = Join (a \/ b)
instance BoundedJoinSemiLattice a => Monoid (Join a) where
mempty = Join bottom
Join a `mappend` Join b = Join (a \/ b)
instance (Eq a, JoinSemiLattice a) => PO.PartialOrd (Join a) where
leq (Join a) (Join b) = joinLeq a b
instance Functor Join where
fmap f (Join x) = Join (f x)
instance Applicative Join where
pure = Join
Join f <*> Join x = Join (f x)
_ *> x = x
instance Monad Join where
return = pure
Join m >>= f = f m
(>>) = (*>)
instance MonadZip Join where
mzip (Join x) (Join y) = Join (x, y)
instance Universe a => Universe (Join a) where
universe = fmap Join universe
instance Finite a => Finite (Join a) where
universeF = fmap Join universeF
newtype Meet a = Meet { getMeet :: a }
deriving (Eq, Ord, Read, Show, Bounded, Typeable, Data, Generic)
instance MeetSemiLattice a => Semigroup (Meet a) where
Meet a <> Meet b = Meet (a /\ b)
instance BoundedMeetSemiLattice a => Monoid (Meet a) where
mempty = Meet top
Meet a `mappend` Meet b = Meet (a /\ b)
instance (Eq a, MeetSemiLattice a) => PO.PartialOrd (Meet a) where
leq (Meet a) (Meet b) = meetLeq a b
instance Functor Meet where
fmap f (Meet x) = Meet (f x)
instance Applicative Meet where
pure = Meet
Meet f <*> Meet x = Meet (f x)
_ *> x = x
instance Monad Meet where
return = pure
Meet m >>= f = f m
(>>) = (*>)
instance MonadZip Meet where
mzip (Meet x) (Meet y) = Meet (x, y)
instance Universe a => Universe (Meet a) where
universe = fmap Meet universe
instance Finite a => Finite (Meet a) where
universeF = fmap Meet universeF
instance JoinSemiLattice All where
All a \/ All b = All $ a \/ b
instance BoundedJoinSemiLattice All where
bottom = All False
instance MeetSemiLattice All where
All a /\ All b = All $ a /\ b
instance BoundedMeetSemiLattice All where
top = All True
instance Lattice All where
instance BoundedLattice All where
instance JoinSemiLattice Any where
Any a \/ Any b = Any $ a \/ b
instance BoundedJoinSemiLattice Any where
bottom = Any False
instance MeetSemiLattice Any where
Any a /\ Any b = Any $ a /\ b
instance BoundedMeetSemiLattice Any where
top = Any True
instance Lattice Any where
instance BoundedLattice Any where
instance JoinSemiLattice a => JoinSemiLattice (Endo a) where
Endo a \/ Endo b = Endo $ a \/ b
instance BoundedJoinSemiLattice a => BoundedJoinSemiLattice (Endo a) where
bottom = Endo bottom
instance MeetSemiLattice a => MeetSemiLattice (Endo a) where
Endo a /\ Endo b = Endo $ a /\ b
instance BoundedMeetSemiLattice a => BoundedMeetSemiLattice (Endo a) where
top = Endo top
instance Lattice a => Lattice (Endo a) where
instance BoundedLattice a => BoundedLattice (Endo a) where
instance JoinSemiLattice a => JoinSemiLattice (Tagged t a) where
Tagged a \/ Tagged b = Tagged $ a \/ b
instance BoundedJoinSemiLattice a => BoundedJoinSemiLattice (Tagged t a) where
bottom = Tagged bottom
instance MeetSemiLattice a => MeetSemiLattice (Tagged t a) where
Tagged a /\ Tagged b = Tagged $ a /\ b
instance BoundedMeetSemiLattice a => BoundedMeetSemiLattice (Tagged t a) where
top = Tagged top
instance Lattice a => Lattice (Tagged t a) where
instance BoundedLattice a => BoundedLattice (Tagged t a) where
instance JoinSemiLattice (Proxy a) where
_ \/ _ = Proxy
instance BoundedJoinSemiLattice (Proxy a) where
bottom = Proxy
instance MeetSemiLattice (Proxy a) where
_ /\ _ = Proxy
instance BoundedMeetSemiLattice (Proxy a) where
top = Proxy
instance Lattice (Proxy a) where
instance BoundedLattice (Proxy a) where
#if MIN_VERSION_base(4,8,0)
instance JoinSemiLattice a => JoinSemiLattice (Identity a) where
Identity a \/ Identity b = Identity (a \/ b)
instance BoundedJoinSemiLattice a => BoundedJoinSemiLattice (Identity a) where
bottom = Identity bottom
instance MeetSemiLattice a => MeetSemiLattice (Identity a) where
Identity a /\ Identity b = Identity (a /\ b)
instance BoundedMeetSemiLattice a => BoundedMeetSemiLattice (Identity a) where
top = Identity top
instance Lattice a => Lattice (Identity a) where
instance BoundedLattice a => BoundedLattice (Identity a) where
#endif
instance JoinSemiLattice a => JoinSemiLattice (Const a b) where
Const a \/ Const b = Const (a \/ b)
instance BoundedJoinSemiLattice a => BoundedJoinSemiLattice (Const a b) where
bottom = Const bottom
instance MeetSemiLattice a => MeetSemiLattice (Const a b) where
Const a /\ Const b = Const (a /\ b)
instance BoundedMeetSemiLattice a => BoundedMeetSemiLattice (Const a b) where
top = Const top
instance Lattice a => Lattice (Const a b) where
instance BoundedLattice a => BoundedLattice (Const a b) where
instance JoinSemiLattice Void where
a \/ _ = a
instance MeetSemiLattice Void where
a /\ _ = a
instance Lattice Void where
unsafeLfp :: (Eq a, BoundedJoinSemiLattice a) => (a -> a) -> a
unsafeLfp = PO.unsafeLfpFrom bottom
lfp :: (Eq a, BoundedJoinSemiLattice a) => (a -> a) -> a
lfp = lfpFrom bottom
lfpFrom :: (Eq a, BoundedJoinSemiLattice a) => a -> (a -> a) -> a
lfpFrom init_x f = PO.unsafeLfpFrom init_x (\x -> f x \/ x)
unsafeGfp :: (Eq a, BoundedMeetSemiLattice a) => (a -> a) -> a
unsafeGfp = PO.unsafeGfpFrom top
gfp :: (Eq a, BoundedMeetSemiLattice a) => (a -> a) -> a
gfp = gfpFrom top
gfpFrom :: (Eq a, BoundedMeetSemiLattice a) => a -> (a -> a) -> a
gfpFrom init_x f = PO.unsafeGfpFrom init_x (\x -> f x /\ x)