module Numeric.LAPACK.Format (
(##),
Format(format),
FormatArray(formatArray),
deflt,
) where
import qualified Numeric.LAPACK.Matrix.Shape.Private as MatrixShape
import qualified Numeric.LAPACK.Matrix.Extent.Private as Extent
import Numeric.LAPACK.Matrix.Shape.Private
(Order(RowMajor, ColumnMajor), Filled(Filled), UnaryProxy)
import Numeric.LAPACK.Matrix.Private (Full)
import Numeric.LAPACK.Scalar (conjugate)
import Numeric.LAPACK.Wrapper (Flip(Flip, getFlip))
import qualified Numeric.Netlib.Class as Class
import qualified Type.Data.Num.Unary.Literal as TypeNum
import qualified Type.Data.Num.Unary as Unary
import Type.Data.Num (integralFromProxy)
import qualified Data.Array.Comfort.Storable.Unchecked as Array
import qualified Data.Array.Comfort.Shape as Shape
import Data.Array.Comfort.Storable (Array)
import qualified Text.PrettyPrint.Boxes as TextBox
import Text.PrettyPrint.Boxes (Box, (/+/))
import Text.Printf (PrintfArg, printf)
import qualified Data.List.Reverse.StrictSpine as ListRev
import qualified Data.List.Match as Match
import qualified Data.List.HT as ListHT
import qualified Data.List as List
import Data.Functor.Compose (Compose(Compose, getCompose))
import Data.Foldable (foldMap)
import Data.List (mapAccumL, transpose)
import Data.Complex (Complex((:+)))
import Data.Maybe.HT (toMaybe)
import Data.Maybe (fromMaybe)
import Data.Char (isSpace)
infix 0 ##
(##) :: (Format a) => a -> String -> IO ()
a ## fmt = putStr $ trim $ TextBox.render $ format fmt a
trim :: String -> String
trim = unlines . map (ListRev.dropWhile isSpace) . lines
deflt :: String
deflt = "%.4g"
class Format a where
format :: String -> a -> Box
instance Format Int where
format _fmt = TextBox.text . show
instance Format Float where
format fmt = TextBox.text . printf fmt
instance Format Double where
format fmt = TextBox.text . printf fmt
instance (Class.Real a) => Format (Complex a) where
format fmt = TextBox.text . concat . printfComplex fmt
instance (Format a) => Format [a] where
format fmt = TextBox.vsep 1 TextBox.right . map (format fmt)
instance (Format a, Format b) => Format (a,b) where
format fmt (a,b) = format fmt a /+/ format fmt b
instance (Format a, Format b, Format c) => Format (a,b,c) where
format fmt (a,b,c) = format fmt a /+/ format fmt b /+/ format fmt c
instance (FormatArray sh, Class.Floating a) => Format (Array sh a) where
format = formatArray
class (Shape.C sh) => FormatArray sh where
formatArray :: (Class.Floating a) => String -> Array sh a -> Box
instance (Integral i) => FormatArray (Shape.ZeroBased i) where
formatArray = formatVector
instance (Integral i) => FormatArray (Shape.OneBased i) where
formatArray = formatVector
formatVector :: (Shape.C sh, Class.Floating a) => String -> Array sh a -> Box
formatVector fmt =
TextBox.hsep 1 TextBox.right .
map (TextBox.text . concat . printfFloating fmt) . Array.toList
instance
(Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width) =>
FormatArray (MatrixShape.Full vert horiz height width) where
formatArray = formatFull
formatFull ::
(Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width,
Class.Floating a) =>
String -> Full vert horiz height width a -> Box
formatFull fmt m =
let MatrixShape.Full order extent = Array.shape m
in formatAligned (printfFloating fmt) $
splitRows order (Extent.dimensions extent) $ Array.toList m
instance
(Eq lower, Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width) =>
FormatArray (MatrixShape.Split lower vert horiz height width) where
formatArray = formatHouseholder
formatHouseholder ::
(Eq lower, Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width,
Class.Floating a) =>
String -> Array (MatrixShape.Split lower vert horiz height width) a -> Box
formatHouseholder fmt m =
let MatrixShape.Split _ order extent = Array.shape m
in formatSeparateTriangle (printfFloating fmt) $
splitRows order (Extent.dimensions extent) $ Array.toList m
instance (Shape.C size) => FormatArray (MatrixShape.Hermitian size) where
formatArray = formatHermitian
formatHermitian ::
(Shape.C size, Class.Floating a) =>
String -> Array (MatrixShape.Hermitian size) a -> Box
formatHermitian fmt m =
let MatrixShape.Hermitian order size = Array.shape m
in formatSeparateTriangle (printfFloating fmt) $
complementTriangle conjugate order (Shape.size size) $ Array.toList m
formatSymmetric ::
(Shape.C size, Class.Floating a) =>
String -> Array (MatrixShape.Symmetric size) a -> Box
formatSymmetric fmt m =
let MatrixShape.Triangular _diag (Filled, Filled) order size = Array.shape m
in formatSeparateTriangle (printfFloating fmt) $
complementTriangle id order (Shape.size size) $ Array.toList m
complementTriangle ::
(Class.Floating a) => (a -> a) -> Order -> Int -> [a] -> [[a]]
complementTriangle adapt order n xs =
let mergeTriangles lower upper =
zipWith (++) (map (map adapt . init) lower) upper
in case order of
RowMajor ->
let tri = slice (take n $ iterate pred n) xs
trans = reverse $ transpose $ map reverse tri
in mergeTriangles trans tri
ColumnMajor ->
let tri = slice (take n [1..]) xs
in mergeTriangles tri (transpose tri)
instance
(MatrixShape.Content lo, MatrixShape.Content up,
MatrixShape.TriDiag diag, Shape.C size) =>
FormatArray (MatrixShape.Triangular lo diag up size) where
formatArray fmt =
getFormatTriangular $
MatrixShape.switchDiagUpLoSym
(FormatTriangular $ \m ->
let MatrixShape.Triangular _diag _uplo order size = Array.shape m
n0 = Unary.unary TypeNum.u0
in formatAligned (printfFloatingMaybe fmt) $
formatBanded (n0,n0) order (size,size) $ Array.toList m)
(FormatTriangular $ formatTriangular fmt)
(FormatTriangular $ formatTriangular fmt)
(FormatTriangular $
formatSymmetric fmt .
Array.mapShape MatrixShape.strictNonUnitDiagonal)
newtype FormatTriangular diag size a b lo up =
FormatTriangular {
getFormatTriangular ::
Array (MatrixShape.Triangular lo diag up size) a -> b
}
formatTriangular ::
(MatrixShape.TriDiag diag, MatrixShape.UpLo lo up,
Shape.C size, Class.Floating a) =>
String -> Array (MatrixShape.Triangular lo diag up size) a -> Box
formatTriangular fmt m =
let MatrixShape.Triangular _diag uplo order size = Array.shape m
in formatAligned (printfFloatingMaybe fmt) $
MatrixShape.caseLoUp uplo
padLowerTriangle padUpperTriangle order (Shape.size size) $
Array.toList m
padUpperTriangle :: Order -> Int -> [a] -> [[Maybe a]]
padUpperTriangle order n xs =
let mxs = map Just xs
nothings = iterate (Nothing:) []
in case order of
RowMajor ->
zipWith (++) nothings (slice (take n $ iterate pred n) mxs)
ColumnMajor ->
transpose $
zipWith (++)
(slice (take n [1..]) mxs)
(reverse $ take n nothings)
padLowerTriangle :: Order -> Int -> [a] -> [[Maybe a]]
padLowerTriangle order n xs =
map (map Just) $
case order of
RowMajor -> slice (take n [1..]) xs
ColumnMajor ->
foldr (\(y:ys) zs -> [y] : zipWith (:) ys zs) []
(slice (take n $ iterate pred n) xs)
slice :: [Int] -> [a] -> [[a]]
slice ns xs =
snd $ mapAccumL (\ys n -> let (vs,ws) = splitAt n ys in (ws,vs)) xs ns
formatSeparateTriangle :: (a -> [String]) -> [[a]] -> Box
formatSeparateTriangle printFmt =
alignSeparated . map concat .
zipWith
(zipWith (\sep -> attachSeparators sep . printFmt))
(ListHT.outerProduct
(\row col -> if row==col then Bar else Space)
[(0::Int)..] [0..])
instance
(Unary.Natural sub, Unary.Natural super,
Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width) =>
FormatArray (MatrixShape.Banded sub super vert horiz height width) where
formatArray fmt m =
let MatrixShape.Banded offDiag order extent = Array.shape m
in formatAligned (printfFloatingMaybe fmt) $
formatBanded offDiag order (Extent.dimensions extent) $
Array.toList m
formatBanded ::
(Shape.C height, Shape.C width, Unary.Natural sub, Unary.Natural super) =>
(UnaryProxy sub, UnaryProxy super) -> Order ->
(height, width) -> [a] -> [[Maybe a]]
formatBanded (sub,super) order (height,width) xs =
let slices =
ListHT.sliceVertical (MatrixShape.bandedBreadth (sub,super)) xs
m = Shape.size height
n = Shape.size width
in case order of
RowMajor ->
map (take n) $
zipWith (shiftRow Nothing)
(iterate (1+) ( integralFromProxy sub))
(map (map Just) slices)
ColumnMajor ->
let ku = integralFromProxy super
in take m $ drop ku $
foldr
(\col mat ->
zipWith (:) (map Just col ++ repeat Nothing) ([]:mat))
(replicate (ku + m n) [])
slices
instance
(Unary.Natural offDiag, Shape.C size) =>
FormatArray (MatrixShape.BandedHermitian offDiag size) where
formatArray fmt m =
let MatrixShape.BandedHermitian offDiag order size = Array.shape m
in formatSeparateTriangle (printfFloatingMaybe fmt) $
formatBandedHermitian offDiag order size $ Array.toList m
formatBandedHermitian ::
(Unary.Natural offDiag, Shape.C size, Class.Floating a) =>
UnaryProxy offDiag -> Order -> size -> [a] -> [[Maybe a]]
formatBandedHermitian offDiag order _size xs =
let k = integralFromProxy offDiag
slices = ListHT.sliceVertical (k + 1) xs
in case order of
RowMajor ->
foldr
(\row square ->
Match.take ([]:square) (map Just row)
:
zipWith (:)
(tail $ map (Just . conjugate) row ++ repeat Nothing)
square)
[] slices
ColumnMajor ->
zipWith (shiftRow Nothing) (iterate (1+) (k)) $ map (map Just) $
zipWith (++)
(map (map conjugate . init) slices)
(drop k $
foldr
(\column band ->
zipWith (++) (map (:[]) column ++ repeat []) ([]:band))
(replicate k [])
slices)
shiftRow :: a -> Int -> [a] -> [a]
shiftRow pad k = if k<=0 then drop (k) else (replicate k pad ++)
splitRows ::
(Shape.C height, Shape.C width) =>
Order -> (height, width) -> [a] -> [[a]]
splitRows order (height,width) =
case order of
RowMajor -> ListHT.sliceVertical (Shape.size width)
ColumnMajor -> ListHT.sliceHorizontal (Shape.size height)
formatAligned :: (a -> [String]) -> [[a]] -> Box
formatAligned printFmt =
alignSeparated . map (concatMap (attachSeparators Space . printFmt))
data Separator = Empty | Space | Bar
deriving (Eq, Ord, Show)
alignSeparated :: [[(Separator, String)]] -> Box
alignSeparated =
TextBox.hcat TextBox.top .
map (TextBox.vcat TextBox.right . map TextBox.text) .
concatMap ((\(seps,column) -> [map formatSeparator seps, column]) . unzip) .
List.unfoldr (viewLAll (Empty,""))
viewLAll :: a -> [[a]] -> Maybe ([a], [[a]])
viewLAll x0 xs =
toMaybe (any (not.null) xs)
(unzip $ map (fromMaybe (x0,[]) . ListHT.viewL) xs)
formatSeparator :: Separator -> String
formatSeparator sep = case sep of Empty -> ""; Space -> " "; Bar -> "|"
attachSeparators :: Separator -> [str] -> [(Separator, str)]
attachSeparators sep = zip (sep:repeat Empty)
printfFloating :: (Class.Floating a) => String -> a -> [String]
printfFloating fmt =
getFlip $
Class.switchFloating
(Flip $ (:[]) . printf fmt)
(Flip $ (:[]) . printf fmt)
(Flip $ printfComplex fmt)
(Flip $ printfComplex fmt)
printfFloatingMaybe :: (Class.Floating a) => String -> Maybe a -> [String]
printfFloatingMaybe fmt =
getFlip $ getCompose $
Class.switchFloating
(Compose $ Flip $ (:[]) . foldMap (printf fmt))
(Compose $ Flip $ (:[]) . foldMap (printf fmt))
(Compose $ Flip $ maybe ["",""] (printfComplex fmt))
(Compose $ Flip $ maybe ["",""] (printfComplex fmt))
printfComplex :: (Class.Real a) => String -> Complex a -> [String]
printfComplex fmt =
getFlip $ getCompose $
Class.switchReal
(Compose $ Flip $ printfComplexAux fmt)
(Compose $ Flip $ printfComplexAux fmt)
printfComplexAux ::
(PrintfArg a, Class.Real a) => String -> Complex a -> [String]
printfComplexAux fmt (r:+i) =
if i<0 || isNegativeZero i
then [printf (fmt ++ "-") r, printf (fmt ++ "i") (i)]
else [printf (fmt ++ "+") r, printf (fmt ++ "i") i]