{-# language DataKinds #-} {-# language KindSignatures #-} {-# language PolyKinds #-} {-# language TypeFamilies #-} {-# language GADTs #-} {-# language ConstraintKinds #-} {-# language TypeOperators #-} {-# language StandaloneDeriving #-} {-# language FlexibleContexts #-} {-# language UndecidableInstances #-} {-# language MultiParamTypeClasses #-} {-# language FlexibleInstances #-} {-# language ExistentialQuantification #-} {-# language DefaultSignatures #-} {-# language ScopedTypeVariables #-} {-# language TypeApplications #-} {-# language AllowAmbiguousTypes #-} {-# language QuantifiedConstraints #-} -- | Main module of @kind-generics@. Please refer to the @README@ file for documentation on how to use this package. module Generics.Kind ( module Data.PolyKinded , module Data.PolyKinded.Atom -- * Generic representation types , (:+:)(..), (:*:)(..), U1(..), M1(..) , F(..), (:=>:)(..), E(..) -- * Generic type classes , GenericK(..) , GenericF, fromF, toF , GenericN, fromN, toN -- * Getting more instances almost for free , fromRepK, toRepK, SubstRep -- * Bridging with "GHC.Generics" , Conv(..) ) where import Data.PolyKinded import Data.PolyKinded.Atom import Data.Kind import GHC.Generics.Extra hiding ((:=>:)) import qualified GHC.Generics.Extra as GG import Type.Reflection -- | Fields: used to represent each of the (visible) arguments to a constructor. -- Replaces the 'K1' type from "GHC.Generics". The type of the field is -- represented by an 'Atom' from "Data.PolyKinded.Atom". -- -- > instance GenericK [] (a :&&: LoT0) where -- > type RepK [] = F V0 :*: F ([] :$: V0) newtype F (t :: Atom d (*)) (x :: LoT d) = F { unF :: Ty t x } deriving instance Show (Ty t x) => Show (F t x) -- | Constraints: used to represent constraints in a constructor. -- Replaces the '(:=>:)' type from "GHC.Generics.Extra". -- -- > data Showable a = Show a => a -> X a -- > -- > instance GenericK Showable (a :&&: LoT0) where -- > type RepK Showable = (Show :$: a) :=>: (F V0) data (:=>:) (c :: Atom d Constraint) (f :: LoT d -> *) (x :: LoT d) where C :: Ty c x => f x -> (c :=>: f) x deriving instance (Ty c x => Show (f x)) => Show ((c :=>: f) x) -- | Existentials: a representation of the form @E f@ describes -- a constructor whose inner type is represented by @f@, and where -- the type variable at index 0, @V0@, is existentially quantified. -- -- > data Exists where -- > E :: t -> Exists -- > -- > instance GenericK Exists LoT0 where -- > type RepK Exists = E (F V0) data E (f :: LoT (k -> d) -> *) (x :: LoT d) where E :: forall (t :: k) d (f :: LoT (k -> d) -> *) (x :: LoT d) . f (t ':&&: x) -> E f x deriving instance (forall t. Show (f (t ':&&: x))) => Show (E f x) -- THE TYPE CLASS -- | Representable types of any kind. The definition of an instance must -- mention the type constructor along with a list of types of the corresponding -- length. For example: -- -- > instance GenericK Int LoT0 -- > instance GenericK [] (a :&&: LoT0) -- > instance GenericK Either (a :&&: b :&&: LoT0) class GenericK (f :: k) (x :: LoT k) where type RepK f :: LoT k -> * -- | Convert the data type to its representation. fromK :: f :@@: x -> RepK f x default fromK :: (Generic (f :@@: x), Conv (Rep (f :@@: x)) (RepK f) x) => f :@@: x -> RepK f x fromK = toKindGenerics . from -- | Convert from a representation to its corresponding data type. toK :: RepK f x -> f :@@: x default toK :: (Generic (f :@@: x), Conv (Rep (f :@@: x)) (RepK f) x) => RepK f x -> f :@@: x toK = to . toGhcGenerics type GenericF t f x = (GenericK f x, x ~ (SplitF t f), t ~ (f :@@: x)) fromF :: forall f t x. GenericF t f x => t -> RepK f x fromF = fromK @_ @f toF :: forall f t x. GenericF t f x => RepK f x -> t toF = toK @_ @f type GenericN n t f x = (GenericK f x, 'TyEnv f x ~ (SplitN n t), t ~ (f :@@: x)) fromN :: forall n t f x. GenericN n t f x => t -> RepK f x fromN = fromK @_ @f toN :: forall n t f x. GenericN n t f x => RepK f x -> t toN = toK @_ @f -- CONVERSION BETWEEN FEWER AND MORE ARGUMENTS fromRepK :: forall f x xs. (GenericK f (x ':&&: xs), SubstRep' (RepK f) x xs) => f x :@@: xs -> SubstRep (RepK f) x xs fromRepK = substRep . fromK @_ @f @(x ':&&: xs) toRepK :: forall f x xs. (GenericK f (x ':&&: xs), SubstRep' (RepK f) x xs) => SubstRep (RepK f) x xs -> f x :@@: xs toRepK = toK @_ @f @(x ':&&: xs) . unsubstRep class SubstRep' (f :: LoT (t -> k) -> *) (x :: t) (xs :: LoT k) where type family SubstRep f x :: LoT k -> * substRep :: f (x ':&&: xs) -> SubstRep f x xs unsubstRep :: SubstRep f x xs -> f (x ':&&: xs) instance SubstRep' U1 x xs where type SubstRep U1 x = U1 substRep U1 = U1 unsubstRep U1 = U1 instance (SubstRep' f x xs, SubstRep' g x xs) => SubstRep' (f :+: g) x xs where type SubstRep (f :+: g) x = (SubstRep f x) :+: (SubstRep g x) substRep (L1 x) = L1 (substRep x) substRep (R1 x) = R1 (substRep x) unsubstRep (L1 x) = L1 (unsubstRep x) unsubstRep (R1 x) = R1 (unsubstRep x) instance (SubstRep' f x xs, SubstRep' g x xs) => SubstRep' (f :*: g) x xs where type SubstRep (f :*: g) x = (SubstRep f x) :*: (SubstRep g x) substRep (x :*: y) = substRep x :*: substRep y unsubstRep (x :*: y) = unsubstRep x :*: unsubstRep y instance SubstRep' f x xs => SubstRep' (M1 i c f) x xs where type SubstRep (M1 i c f) x = M1 i c (SubstRep f x) substRep (M1 x) = M1 (substRep x) unsubstRep (M1 x) = M1 (unsubstRep x) instance (Ty (SubstAtom c x) xs, Ty c (x ':&&: xs), SubstRep' f x xs) => SubstRep' (c :=>: f) x xs where type SubstRep (c :=>: f) x = (SubstAtom c x) :=>: (SubstRep f x) substRep (C x) = C (substRep x) unsubstRep (C x) = C (unsubstRep x) instance (Ty (SubstAtom t x) xs ~ Ty t (x ':&&: xs)) => SubstRep' (F t) x xs where type SubstRep (F t) x = F (SubstAtom t x) substRep (F x) = F x unsubstRep (F x) = F x type family SubstAtom (f :: Atom (t -> k) d) (x :: t) :: Atom k d where SubstAtom ('Var 'VZ) x = 'Kon x SubstAtom ('Var ('VS v)) x = 'Var v SubstAtom ('Kon t) x = 'Kon t SubstAtom (t1 ':@: t2) x = (SubstAtom t1 x) ':@: (SubstAtom t2 x) SubstAtom (t1 ':&: t2) x = (SubstAtom t1 x) ':&: (SubstAtom t2 x) -- CONVERSION BETWEEN GHC.GENERICS AND KIND-GENERICS -- | Bridges a representation of a data type using the combinators -- in "GHC.Generics" with a representation using this module. -- You are never expected to manipulate this type class directly, -- it is part of the deriving mechanism for 'GenericK'. class Conv (gg :: * -> *) (kg :: LoT d -> *) (tys :: LoT d) where toGhcGenerics :: kg tys -> gg a toKindGenerics :: gg a -> kg tys instance Conv U1 U1 tys where toGhcGenerics U1 = U1 toKindGenerics U1 = U1 instance (Conv f f' tys, Conv g g' tys) => Conv (f :+: g) (f' :+: g') tys where toGhcGenerics (L1 x) = L1 (toGhcGenerics x) toGhcGenerics (R1 x) = R1 (toGhcGenerics x) toKindGenerics (L1 x) = L1 (toKindGenerics x) toKindGenerics (R1 x) = R1 (toKindGenerics x) instance (Conv f f' tys, Conv g g' tys) => Conv (f :*: g) (f' :*: g') tys where toGhcGenerics (x :*: y) = toGhcGenerics x :*: toGhcGenerics y toKindGenerics (x :*: y) = toKindGenerics x :*: toKindGenerics y instance {-# OVERLAPPABLE #-} (Conv f f' tys) => Conv (M1 i c f) f' tys where toGhcGenerics x = M1 (toGhcGenerics x) toKindGenerics (M1 x) = toKindGenerics x instance {-# OVERLAPS #-} (Conv f f' tys) => Conv (M1 i c f) (M1 i c f') tys where toGhcGenerics (M1 x) = M1 (toGhcGenerics x) toKindGenerics (M1 x) = M1 (toKindGenerics x) instance (k ~ Ty t tys, Conv f f' tys) => Conv (k GG.:=>: f) (t :=>: f') tys where toGhcGenerics (C x) = SuchThat (toGhcGenerics x) toKindGenerics (SuchThat x) = C (toKindGenerics x) instance (k ~ Ty t tys) => Conv (K1 p k) (F t) tys where toGhcGenerics (F x) = K1 x toKindGenerics (K1 x) = F x