{-# LANGUAGE CPP #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE GADTs #-} #if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ < 710 {-# LANGUAGE Trustworthy #-} #endif ------------------------------------------------------------------------------------------- -- | -- Copyright : 2013-2016 Edward Kmett and Dan Doel -- License : BSD -- -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : experimental -- Portability : rank N types -- -- @'Day' f -| 'Curried' f@ -- -- @'Day' f ~ 'Compose' f@ when f preserves colimits / is a left adjoint. (Due in part to the -- strength of all functors in Hask.) -- -- So by the uniqueness of adjoints, when f is a left adjoint, @'Curried' f ~ 'Rift' f@ ------------------------------------------------------------------------------------------- module Data.Functor.Day.Curried ( -- * Right Kan lifts Curried(..) , toCurried, fromCurried, applied, unapplied , adjointToCurried, curriedToAdjoint , composedAdjointToCurried, curriedToComposedAdjoint , liftCurried, lowerCurried, rap ) where #if __GLASGOW_HASKELL__ < 710 import Control.Applicative #endif import Data.Functor.Adjunction import Data.Functor.Day import Data.Functor.Identity newtype Curried g h a = Curried { runCurried :: forall r. g (a -> r) -> h r } instance Functor g => Functor (Curried g h) where fmap f (Curried g) = Curried (g . fmap (.f)) {-# INLINE fmap #-} instance (Functor g, g ~ h) => Applicative (Curried g h) where pure a = Curried (fmap ($a)) {-# INLINE pure #-} Curried mf <*> Curried ma = Curried (ma . mf . fmap (.)) {-# INLINE (<*>) #-} -- | The natural isomorphism between @f@ and @Curried f f@. -- @ -- 'lowerCurried' '.' 'liftCurried' ≡ 'id' -- 'liftCurried' '.' 'lowerCurried' ≡ 'id' -- @ -- -- @ -- 'lowerCurried' ('liftCurried' x) -- definition -- 'lowerCurried' ('Curried' ('<*>' x)) -- definition -- ('<*>' x) ('pure' 'id') -- beta reduction -- 'pure' 'id' '<*>' x -- Applicative identity law -- x -- @ liftCurried :: Applicative f => f a -> Curried f f a liftCurried fa = Curried (<*> fa) {-# INLINE liftCurried #-} -- | Lower 'Curried' by applying 'pure' 'id' to the continuation. -- -- See 'liftCurried'. lowerCurried :: Applicative f => Curried f g a -> g a lowerCurried (Curried f) = f (pure id) {-# INLINE lowerCurried #-} -- | Indexed applicative composition of right Kan lifts. rap :: Functor f => Curried f g (a -> b) -> Curried g h a -> Curried f h b rap (Curried mf) (Curried ma) = Curried (ma . mf . fmap (.)) {-# INLINE rap #-} -- | This is the counit of the @Day f -| Curried f@ adjunction applied :: Functor f => Day f (Curried f g) a -> g a applied (Day fb (Curried fg) bca) = fg (bca <$> fb) {-# INLINE applied #-} -- | This is the unit of the @Day f -| Curried f@ adjunction unapplied :: g a -> Curried f (Day f g) a unapplied ga = Curried $ \ fab -> Day fab ga id {-# INLINE unapplied #-} -- | The universal property of 'Curried' toCurried :: (forall x. Day g k x -> h x) -> k a -> Curried g h a toCurried h ka = Curried $ \gar -> h (Day gar ka id) {-# INLINE toCurried #-} -- | -- @ -- 'toCurried' . 'fromCurried' ≡ 'id' -- 'fromCurried' . 'toCurried' ≡ 'id' -- @ fromCurried :: Functor f => (forall a. k a -> Curried f h a) -> Day f k b -> h b fromCurried f (Day fc kd cdb) = runCurried (f kd) (cdb <$> fc) {-# INLINE fromCurried #-} -- | @Curried f Identity a@ is isomorphic to the right adjoint to @f@ if one exists. -- -- @ -- 'adjointToCurried' . 'curriedToAdjoint' ≡ 'id' -- 'curriedToAdjoint' . 'adjointToCurried' ≡ 'id' -- @ adjointToCurried :: Adjunction f u => u a -> Curried f Identity a adjointToCurried ua = Curried (Identity . rightAdjunct (<$> ua)) {-# INLINE adjointToCurried #-} -- | @Curried f Identity a@ is isomorphic to the right adjoint to @f@ if one exists. curriedToAdjoint :: Adjunction f u => Curried f Identity a -> u a curriedToAdjoint (Curried m) = leftAdjunct (runIdentity . m) id {-# INLINE curriedToAdjoint #-} -- | @Curried f h a@ is isomorphic to the post-composition of the right adjoint of @f@ onto @h@ if such a right adjoint exists. -- -- @ -- 'curriedToComposedAdjoint' . 'composedAdjointToCurried' ≡ 'id' -- 'composedAdjointToCurried' . 'curriedToComposedAdjoint' ≡ 'id' -- @ curriedToComposedAdjoint :: Adjunction f u => Curried f h a -> u (h a) curriedToComposedAdjoint (Curried m) = leftAdjunct m id {-# INLINE curriedToComposedAdjoint #-} -- | @Curried f h a@ is isomorphic to the post-composition of the right adjoint of @f@ onto @h@ if such a right adjoint exists. composedAdjointToCurried :: (Functor h, Adjunction f u) => u (h a) -> Curried f h a composedAdjointToCurried uha = Curried $ rightAdjunct (\b -> fmap b <$> uha) {-# INLINE composedAdjointToCurried #-}