{-# LANGUAGE CPP #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE GADTs #-}

#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
#endif
-------------------------------------------------------------------------------------------
-- |
-- Copyright 	: 2013 Edward Kmett and Dan Doel
-- License	: BSD
--
-- Maintainer	: Edward Kmett <ekmett@gmail.com>
-- Stability	: experimental
-- Portability	: rank N types
--
-- Right and Left Kan lifts for functors over Hask, where they exist.
--
-- <http://ncatlab.org/nlab/show/Kan+lift>
-------------------------------------------------------------------------------------------
module Data.Functor.Kan.Rift
  (
  -- * Right Kan lifts
    Rift(..)
  , toRift, fromRift, grift
  , composeRift, decomposeRift
  , adjointToRift, riftToAdjoint
  , composedAdjointToRift, riftToComposedAdjoint
  , rap
  ) where

import Control.Applicative
import Data.Functor.Adjunction
import Data.Functor.Composition
import Data.Functor.Identity

-- * Right Kan Lift

-- |
--
-- @g . 'Rift' g f => f@
--
-- This could alternately be defined directly from the (co)universal propertly
-- in which case, we'd get 'toRift' = 'UniversalRift', but then the usage would
-- suffer.
--
-- @
-- data 'UniversalRift' g f a = forall z. 'Functor' z =>
--      'UniversalRift' (forall x. g (z x) -> f x) (z a)
-- @
--
-- We can witness the isomorphism between Rift and UniversalRift using:
--
-- @
-- riftIso1 :: Functor g => UniversalRift g f a -> Rift g f a
-- riftIso1 (UniversalRift h z) = Rift $ \\g -> h $ fmap (\\k -> k \<$\> z) g
-- @
--
-- @
-- riftIso2 :: Rift g f a -> UniversalRift g f a
-- riftIso2 (Rift e) = UniversalRift e id
-- @
--
-- @
-- riftIso1 (riftIso2 (Rift h)) =
-- riftIso1 (UniversalRift h id) =          -- by definition
-- Rift $ \\g -> h $ fmap (\\k -> k \<$\> id) g -- by definition
-- Rift $ \\g -> h $ fmap id g               -- \<$\> = (.) and (.id)
-- Rift $ \\g -> h g                         -- by functor law
-- Rift h                                   -- eta reduction
-- @
--
-- The other direction is left as an exercise for the reader.
--
-- There are several monads that we can form from @Rift@.
--
-- When @g@ is corepresentable (e.g. is a right adjoint) then there exists @x@ such that @g ~ (->) x@, then it follows that
--
-- @
-- Rift g g a ~
-- forall r. (x -> a -> r) -> x -> r ~
-- forall r. (a -> x -> r) -> x -> r ~
-- forall r. (a -> g r) -> g r ~
-- Codensity g r
-- @
--
-- When @f@ is a left adjoint, so that @f -| g@ then
--
-- @
-- Rift f f a ~
-- forall r. f (a -> r) -> f r ~
-- forall r. (a -> r) -> g (f r) ~
-- forall r. (a -> r) -> Adjoint f g r ~
-- Yoneda (Adjoint f g r)
-- @
--
-- An alternative way to view that is to note that whenever @f@ is a left adjoint then @f -| 'Rift' f 'Identity'@, and since @'Rift' f f@ is isomorphic to @'Rift' f 'Identity' (f a)@, this is the 'Monad' formed by the adjunction.
--
-- @'Rift' 'Identity' m@ can be a 'Monad' for any 'Monad' @m@, as it is isomorphic to @'Yoneda' m@.

newtype Rift g h a =
  Rift { runRift :: forall r. g (a -> r) -> h r }

instance Functor g => Functor (Rift g h) where
  fmap f (Rift g) = Rift (g . fmap (.f))
  {-# INLINE fmap #-}

instance (Functor g, g ~ h) => Applicative (Rift g h) where
  pure a = Rift (fmap ($a))
  {-# INLINE pure #-}
  Rift mf <*> Rift ma = Rift (ma . mf . fmap (.))
  {-# INLINE (<*>) #-}

-- | Indexed applicative composition of right Kan lifts.
rap :: Functor f => Rift f g (a -> b) -> Rift g h a -> Rift f h b
rap (Rift mf) (Rift ma) = Rift (ma . mf . fmap (.))
{-# INLINE rap #-}

grift :: Adjunction f u => f (Rift f k a) -> k a
grift = rightAdjunct (\r -> leftAdjunct (runRift r) id)
{-# INLINE grift #-}

-- | The universal property of 'Rift'
toRift :: (Functor g, Functor k) => (forall x. g (k x) -> h x) -> k a -> Rift g h a
toRift h z = Rift $ \g -> h $ fmap (<$> z) g
{-# INLINE toRift #-}

-- |
-- When @f -| u@, then @f -| Rift f Identity@ and
--
-- @
-- 'toRift' . 'fromRift' ≡ 'id'
-- 'fromRift' . 'toRift' ≡ 'id'
-- @
fromRift :: Adjunction f u => (forall a. k a -> Rift f h a) -> f (k b) -> h b
fromRift f = grift . fmap f
{-# INLINE fromRift #-}

-- | @Rift f Identity a@ is isomorphic to the right adjoint to @f@ if one exists.
--
-- @
-- 'adjointToRift' . 'riftToAdjoint' ≡ 'id'
-- 'riftToAdjoint' . 'adjointToRift' ≡ 'id'
-- @
adjointToRift :: Adjunction f u => u a -> Rift f Identity a
adjointToRift ua = Rift (Identity . rightAdjunct (<$> ua))
{-# INLINE adjointToRift #-}

-- | @Rift f Identity a@ is isomorphic to the right adjoint to @f@ if one exists.
riftToAdjoint :: Adjunction f u => Rift f Identity a -> u a
riftToAdjoint (Rift m) = leftAdjunct (runIdentity . m) id
{-# INLINE riftToAdjoint #-}

-- |
--
-- @
-- 'composeRift' . 'decomposeRift' ≡ 'id'
-- 'decomposeRift' . 'composeRift' ≡ 'id'
-- @
composeRift :: (Composition compose, Adjunction g u) => Rift f (Rift g h) a -> Rift (compose g f) h a
composeRift (Rift f) = Rift (grift . fmap f . decompose)
{-# INLINE composeRift #-}

decomposeRift :: (Composition compose, Functor f, Functor g) => Rift (compose g f) h a -> Rift f (Rift g h) a
decomposeRift (Rift f) = Rift $ \far -> Rift (f . compose . fmap (\rs -> fmap (rs.) far))
{-# INLINE decomposeRift #-}


-- | @Rift f h a@ is isomorphic to the post-composition of the right adjoint of @f@ onto @h@ if such a right adjoint exists.
--
-- @
-- 'riftToComposedAdjoint' . 'composedAdjointToRift' ≡ 'id'
-- 'composedAdjointToRift' . 'riftToComposedAdjoint' ≡ 'id'
-- @

riftToComposedAdjoint :: Adjunction f u => Rift f h a -> u (h a)
riftToComposedAdjoint (Rift m) = leftAdjunct m id
{-# INLINE riftToComposedAdjoint #-}

-- | @Rift f h a@ is isomorphic to the post-composition of the right adjoint of @f@ onto @h@ if such a right adjoint exists.
composedAdjointToRift :: (Functor h, Adjunction f u) => u (h a) -> Rift f h a
composedAdjointToRift uha = Rift $ rightAdjunct (\b -> fmap b <$> uha)
{-# INLINE composedAdjointToRift #-}