-- | -- Copyright: (C) 2013 Amgen, Inc. -- -- Vectors that can be passed to and from R with no copying at all. These -- vectors are an instance of "Data.Vector.Storable", where the memory is -- allocated from the R heap, in such a way that they can be converted to -- a 'SEXP' through simple pointer arithmetic (see 'toSEXP') /in constant time/. -- -- The main difference between "Data.Vector.SEXP" and "Data.Vector.Storable" is -- that the former uses a header-prefixed data layout (the header immediately -- precedes the payload of the vector). This means that no additional pointer -- dereferencing is needed to reach the vector data. The trade-off is that most -- slicing operations are O(N) instead of O(1). -- -- If you make heavy use of slicing, then it's best to convert to -- a "Data.Vector.Storable" vector first, using 'unsafeToStorable'. -- -- Note that since 'unstream' relies on slicing operations, it will still be an -- O(N) operation but it will copy vector data twice (instead of once). {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} module Data.Vector.SEXP ( Vector(..) , Mutable.MVector(..) , ElemRep , VECTOR , Data.Vector.SEXP.fromSEXP , unsafeFromSEXP , Data.Vector.SEXP.toSEXP , unsafeToSEXP -- * Accessors -- ** Length information , length , null -- ** Indexing , (!) , (!?) , head , last , unsafeIndex , unsafeHead , unsafeLast -- ** Monadic indexing , indexM , headM , lastM , unsafeIndexM , unsafeHeadM , unsafeLastM -- ** Extracting subvectors (slicing) , slice , init , take , drop , tail , splitAt , unsafeTail , unsafeSlice , unsafeDrop , unsafeTake , unsafeInit -- * Construction -- ** Initialisation , empty , singleton , replicate , generate , iterateN -- ** Monadic initialisation , replicateM , generateM , create -- ** Unfolding , unfoldr , unfoldrN , constructN , constructrN -- ** Enumeration , enumFromN , enumFromStepN , enumFromTo , enumFromThenTo -- ** Concatenation , cons , snoc , (++) , concat -- ** Restricting memory usage , force -- * Modifying vectors -- ** Bulk updates , (//) -- , update_, -- unsafeUpd, unsafeUpdate_ -- ** Accumulations , accum{-, accumulate_-} , unsafeAccum{-, unsafeAccumulate_-} -- ** Permutations , reverse{-, backpermute-}{-, unsafeBackpermute -} -- ** Safe destructive updates {-, modify-} -- * Elementwise operations -- ** Mapping , map , imap , concatMap -- ** Monadic mapping , mapM , mapM_ , forM , forM_ -- ** Zipping , zipWith , zipWith3 , zipWith4 , zipWith5 , zipWith6 , izipWith , izipWith3 , izipWith4 , izipWith5 , izipWith6 -- ** Monadic zipping {-, zipWithM-}, zipWithM_ -- * Working with predicates -- ** Filtering , filter , ifilter , filterM , takeWhile , dropWhile -- ** Partitioning , partition , unstablePartition , span , break -- ** Searching , elem , notElem , find , findIndex , {-findIndices,-} elemIndex {-, elemIndices -} -- * Folding , foldl , foldl1 , foldl' , foldl1' , foldr , foldr1 , foldr' , foldr1' , ifoldl , ifoldl' , ifoldr , ifoldr' -- ** Specialised folds , all , any , and , or , sum , product , maximum , maximumBy , minimum , minimumBy , minIndex , minIndexBy , maxIndex , maxIndexBy -- ** Monadic folds , foldM , foldM' , fold1M , fold1M' , foldM_ , foldM'_ , fold1M_ , fold1M'_ -- * Prefix sums (scans) , prescanl , prescanl' , postscanl , postscanl' , scanl , scanl' , scanl1 , scanl1' , prescanr , prescanr' , postscanr , postscanr' , scanr , scanr' , scanr1 , scanr1' -- * Conversions -- ** Lists , toList , fromList , fromListN -- ** Mutable vectors , freeze , thaw , copy , unsafeFreeze , unsafeThaw , unsafeCopy -- ** SEXP specific , toString , toByteString , fromStorable , unsafeToStorable ) where import Data.Vector.SEXP.Base import Data.Vector.SEXP.Mutable (MVector(..)) import qualified Data.Vector.SEXP.Mutable as Mutable import Foreign.R ( SEXP ) import qualified Foreign.R as R import Foreign.R.Type ( SEXPTYPE(Char) ) import Control.Monad.Primitive ( PrimMonad, PrimState ) import Control.Monad.ST (ST) import qualified Data.Vector.Generic as G import qualified Data.Vector.Fusion.Stream as Stream import qualified Data.Vector.Storable as Storable import Data.ByteString ( ByteString ) import qualified Data.ByteString.Unsafe as B import Control.Applicative ((<$>)) import Control.Monad ( liftM ) import Control.Monad.Primitive ( unsafeInlineIO, unsafePrimToPrim ) import Data.Word ( Word8 ) -- import Data.Int ( Int32 ) import Foreign ( Ptr, plusPtr, castPtr ) import Foreign.C import Foreign.Storable import Foreign.Marshal.Array ( copyArray ) #if __GLASGOW_HASKELL__ >= 708 import qualified GHC.Exts as Exts #endif import Prelude ( Eq(..) , Enum , Monad(..) , Num(..) , Ord(..) , Show(..) , Bool , Int , IO , Maybe , Ordering , String , (.) , ($) , ($!) , (=<<) , all , and , any , fromIntegral , or , seq , uncurry ) import qualified Prelude #include #define USE_RINTERNALS #include -- | Immutable vectors. The second type paramater is a phantom parameter -- reflecting at the type level the tag of the vector when viewed as a 'SEXP'. -- The tag of the vector and the representation type are related via 'ElemRep'. newtype Vector s (ty :: SEXPTYPE) a = Vector { unVector :: SEXP s ty } type instance G.Mutable (Vector r ty) = MVector r ty instance (Eq a, VECTOR s ty a) => Eq (Vector s ty a) where a == b = toList a == toList b instance (Show a, VECTOR s ty a) => Show (Vector s ty a) where show v = "fromList " Prelude.++ showList (toList v) "" instance (VECTOR s ty a) => G.Vector (Vector s ty) a where basicUnsafeFreeze (MVector s) = return (Vector s) basicUnsafeThaw (Vector s) = return (MVector s) basicLength (Vector s) = unsafeInlineIO $ fromIntegral <$> -- ({# get VECSEXP->vecsxp.length #} (R.unsexp s) :: IO Int32) ((\ ptr -> do { peekByteOff ptr 32 :: IO CInt }) (R.unsexp s)) -- XXX Basic unsafe slice is O(N) complexity as it allocates a copy of -- a vector, due to limitations of R's VECSXP structure, which we reuse -- directly. basicUnsafeSlice i l v = unsafeInlineIO $ do mv <- Mutable.new l copyArray (toMVecPtr mv) (toVecPtr v `plusPtr` i) l G.basicUnsafeFreeze mv basicUnsafeIndexM v i = return . unsafeInlineIO $ peekElemOff (toVecPtr v) i basicUnsafeCopy mv v = unsafePrimToPrim $ copyArray (toMVecPtr mv) (toVecPtr v) (G.basicLength v) elemseq _ = seq #if __GLASGOW_HASKELL__ >= 708 instance VECTOR s ty a => Exts.IsList (Vector s ty a) where type Item (Vector s ty a) = a fromList = fromList fromListN = fromListN toList = toList #endif toVecPtr :: Vector s ty a -> Ptr a toVecPtr mv = castPtr (R.unsafeSEXPToVectorPtr $ unVector mv) toMVecPtr :: MVector s ty r a -> Ptr a toMVecPtr mv = castPtr (R.unsafeSEXPToVectorPtr $ unMVector mv) -- | /O(n)/ Create an immutable vector from a 'SEXP'. Because 'SEXP's are -- mutable, this function yields an immutable /copy/ of the 'SEXP'. fromSEXP :: (VECTOR s ty a, PrimMonad m) => SEXP s ty -> m (Vector s ty a) fromSEXP s = G.freeze (Mutable.fromSEXP s) -- | /O(1)/ Unsafe convert a mutable 'SEXP' to an immutable vector without -- copying. The mutable vector must not be used after this operation, lest one -- runs the risk of breaking referential transparency. unsafeFromSEXP :: VECTOR s ty a => SEXP s ty -> Vector s ty a unsafeFromSEXP s = Vector s -- | /O(n)/ Yield a (mutable) copy of the vector as a 'SEXP'. toSEXP :: (VECTOR s ty a, PrimMonad m) => Vector s ty a -> m (SEXP s ty) toSEXP = liftM Mutable.toSEXP . G.thaw -- | /O(1)/ Unsafely convert an immutable vector to a (mutable) 'SEXP' without -- copying. The immutable vector must not be used after this operation. unsafeToSEXP :: (VECTOR s ty a, PrimMonad m) => Vector s ty a -> m (SEXP s ty) unsafeToSEXP = liftM Mutable.toSEXP . G.unsafeThaw -- | /O(n)/ Convert a character vector into a 'String'. toString :: Vector s 'Char Word8 -> String toString v = unsafeInlineIO $ peekCString . castPtr . R.unsafeSEXPToVectorPtr . unVector $ v -- | /O(1)/ Convert a character vector into a strict 'ByteString'. toByteString :: Vector s 'Char Word8 -> ByteString toByteString v@(Vector p) = unsafeInlineIO $ B.unsafePackCStringLen (castPtr $! R.unsafeSEXPToVectorPtr p, G.length v) ------------------------------------------------------------------------ -- Vector API -- ------------------------------------------------------------------------ -- Length ------------------------------------------------------------------------ -- | /O(1)/ Yield the length of the vector. length :: VECTOR s ty a => Vector s ty a -> Int {-# INLINE length #-} length = G.length -- | /O(1)/ Test whether a vector if empty null :: VECTOR s ty a => Vector s ty a -> Bool {-# INLINE null #-} null = G.null ------------------------------------------------------------------------ -- Indexing ------------------------------------------------------------------------ -- | O(1) Indexing (!) :: VECTOR s ty a => Vector s ty a -> Int -> a {-# INLINE (!) #-} (!) = (G.!) -- | O(1) Safe indexing (!?) :: VECTOR s ty a => Vector s ty a -> Int -> Maybe a {-# INLINE (!?) #-} (!?) = (G.!?) -- | /O(1)/ First element head :: VECTOR s ty a => Vector s ty a -> a {-# INLINE head #-} head = G.head -- | /O(1)/ Last element last :: VECTOR s ty a => Vector s ty a -> a {-# INLINE last #-} last = G.last -- | /O(1)/ Unsafe indexing without bounds checking unsafeIndex :: VECTOR s ty a => Vector s ty a -> Int -> a {-# INLINE unsafeIndex #-} unsafeIndex = G.unsafeIndex -- | /O(1)/ First element without checking if the vector is empty unsafeHead :: VECTOR s ty a => Vector s ty a -> a {-# INLINE unsafeHead #-} unsafeHead = G.unsafeHead -- | /O(1)/ Last element without checking if the vector is empty unsafeLast :: VECTOR s ty a => Vector s ty a -> a {-# INLINE unsafeLast #-} unsafeLast = G.unsafeLast ------------------------------------------------------------------------ -- Monadic indexing ------------------------------------------------------------------------ -- | /O(1)/ Indexing in a monad. -- -- The monad allows operations to be strict in the vector when necessary. -- Suppose vector copying is implemented like this: -- -- > copy mv v = ... write mv i (v ! i) ... -- -- For lazy vectors, @v ! i@ would not be evaluated which means that @mv@ -- would unnecessarily retain a reference to @v@ in each element written. -- -- With 'indexM', copying can be implemented like this instead: -- -- > copy mv v = ... do -- > x <- indexM v i -- > write mv i x -- -- Here, no references to @v@ are retained because indexing (but /not/ the -- elements) is evaluated eagerly. -- indexM :: (VECTOR s ty a, Monad m) => Vector s ty a -> Int -> m a {-# INLINE indexM #-} indexM = G.indexM -- | /O(1)/ First element of a vector in a monad. See 'indexM' for an -- explanation of why this is useful. headM :: (VECTOR s ty a, Monad m) => Vector s ty a -> m a {-# INLINE headM #-} headM = G.headM -- | /O(1)/ Last element of a vector in a monad. See 'indexM' for an -- explanation of why this is useful. lastM :: (VECTOR s ty a, Monad m) => Vector s ty a -> m a {-# INLINE lastM #-} lastM = G.lastM -- | /O(1)/ Indexing in a monad without bounds checks. See 'indexM' for an -- explanation of why this is useful. unsafeIndexM :: (VECTOR s ty a, Monad m) => Vector s ty a -> Int -> m a {-# INLINE unsafeIndexM #-} unsafeIndexM = G.unsafeIndexM -- | /O(1)/ First element in a monad without checking for empty vectors. -- See 'indexM' for an explanation of why this is useful. unsafeHeadM :: (VECTOR s ty a, Monad m) => Vector s ty a -> m a {-# INLINE unsafeHeadM #-} unsafeHeadM = G.unsafeHeadM -- | /O(1)/ Last element in a monad without checking for empty vectors. -- See 'indexM' for an explanation of why this is useful. unsafeLastM :: (VECTOR s ty a, Monad m) => Vector s ty a -> m a {-# INLINE unsafeLastM #-} unsafeLastM = G.unsafeLastM ------------------------------------------------------------------------ -- Extracting subvectors (slicing) ------------------------------------------------------------------------ -- | /O(N)/ Yield a slice of the vector with copying it. The vector must -- contain at least @i+n@ elements. slice :: VECTOR s ty a => Int -- ^ @i@ starting index -> Int -- ^ @n@ length -> Vector s ty a -> Vector s ty a {-# INLINE slice #-} slice = G.slice -- | /O(N)/ Yield all but the last element, this operation will copy an array. -- The vector may not be empty. init :: VECTOR s ty a => Vector s ty a -> Vector s ty a {-# INLINE init #-} init = G.init -- | /O(N)/ Copy all but the first element. The vector may not be empty. tail :: VECTOR s ty a => Vector s ty a -> Vector s ty a {-# INLINE tail #-} tail = G.tail -- | /O(N)/ Yield at the first @n@ elements with copying. The vector may -- contain less than @n@ elements in which case it is returned unchanged. take :: VECTOR s ty a => Int -> Vector s ty a -> Vector s ty a {-# INLINE take #-} take = G.take -- | /O(N)/ Yield all but the first @n@ elements with copying. The vector may -- contain less than @n@ elements in which case an empty vector is returned. drop :: VECTOR s ty a => Int -> Vector s ty a -> Vector s ty a {-# INLINE drop #-} drop = G.drop -- | /O(N)/ Yield the first @n@ elements paired with the remainder with copying. -- -- Note that @'splitAt' n v@ is equivalent to @('take' n v, 'drop' n v)@ -- but slightly more efficient. {-# INLINE splitAt #-} splitAt :: VECTOR s ty a => Int -> Vector s ty a -> (Vector s ty a, Vector s ty a) splitAt = G.splitAt -- | /O(N)/ Yield a slice of the vector with copying. The vector must -- contain at least @i+n@ elements but this is not checked. unsafeSlice :: VECTOR s ty a => Int -- ^ @i@ starting index -> Int -- ^ @n@ length -> Vector s ty a -> Vector s ty a {-# INLINE unsafeSlice #-} unsafeSlice = G.unsafeSlice -- | /O(N)/ Yield all but the last element with copying. The vector may not -- be empty but this is not checked. unsafeInit :: VECTOR s ty a => Vector s ty a -> Vector s ty a {-# INLINE unsafeInit #-} unsafeInit = G.unsafeInit -- | /O(N)/ Yield all but the first element with copying. The vector may not -- be empty but this is not checked. unsafeTail :: VECTOR s ty a => Vector s ty a -> Vector s ty a {-# INLINE unsafeTail #-} unsafeTail = G.unsafeTail -- | /O(N)/ Yield the first @n@ elements with copying. The vector must -- contain at least @n@ elements but this is not checked. unsafeTake :: VECTOR s ty a => Int -> Vector s ty a -> Vector s ty a {-# INLINE unsafeTake #-} unsafeTake = G.unsafeTake -- | /O(N)/ Yield all but the first @n@ elements with copying. The vector -- must contain at least @n@ elements but this is not checked. unsafeDrop :: VECTOR s ty a => Int -> Vector s ty a -> Vector s ty a {-# INLINE unsafeDrop #-} unsafeDrop = G.unsafeDrop -- Initialisation -- -------------- -- | /O(1)/ Empty vector empty :: VECTOR s ty a => Vector s ty a {-# INLINE empty #-} empty = G.empty -- TODO test -- | /O(1)/ Vector with exactly one element singleton :: VECTOR s ty a => a -> Vector s ty a {-# INLINE singleton #-} singleton = G.singleton -- | /O(n)/ Vector of the given length with the same value in each position replicate :: VECTOR s ty a => Int -> a -> Vector s ty a {-# INLINE replicate #-} replicate = G.replicate -- | /O(n)/ Construct a vector of the given length by applying the function to -- each index generate :: VECTOR s ty a => Int -> (Int -> a) -> Vector s ty a {-# INLINE generate #-} generate = G.generate -- | /O(n)/ Apply function n times to value. Zeroth element is original value. iterateN :: VECTOR s ty a => Int -> (a -> a) -> a -> Vector s ty a {-# INLINE iterateN #-} iterateN = G.iterateN -- Unfolding -- --------- -- | /O(n)/ Construct a Vector s ty by repeatedly applying the generator function -- to a seed. The generator function yields 'Just' the next element and the -- new seed or 'Nothing' if there are no more elements. -- -- > unfoldr (\n -> if n == 0 then Nothing else Just (n,n-1)) 10 -- > = <10,9,8,7,6,5,4,3,2,1> unfoldr :: VECTOR s ty a => (b -> Maybe (a, b)) -> b -> Vector s ty a {-# INLINE unfoldr #-} unfoldr = G.unfoldr -- | /O(n)/ Construct a vector with at most @n@ by repeatedly applying the -- generator function to the a seed. The generator function yields 'Just' the -- next element and the new seed or 'Nothing' if there are no more elements. -- -- > unfoldrN 3 (\n -> Just (n,n-1)) 10 = <10,9,8> unfoldrN :: VECTOR s ty a => Int -> (b -> Maybe (a, b)) -> b -> Vector s ty a {-# INLINE unfoldrN #-} unfoldrN = G.unfoldrN -- | /O(n)/ Construct a vector with @n@ elements by repeatedly applying the -- generator function to the already constructed part of the vector. -- -- > constructN 3 f = let a = f <> ; b = f ; c = f in f -- constructN :: VECTOR s ty a => Int -> (Vector s ty a -> a) -> Vector s ty a {-# INLINE constructN #-} constructN = G.constructN -- | /O(n)/ Construct a vector with @n@ elements from right to left by -- repeatedly applying the generator function to the already constructed part -- of the vector. -- -- > constructrN 3 f = let a = f <> ; b = f ; c = f in f -- constructrN :: VECTOR s ty a => Int -> (Vector s ty a -> a) -> Vector s ty a {-# INLINE constructrN #-} constructrN = G.constructrN -- Enumeration -- ----------- -- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+1@ -- etc. This operation is usually more efficient than 'enumFromTo'. -- -- > enumFromN 5 3 = <5,6,7> enumFromN :: (VECTOR s ty a, Num a) => a -> Int -> Vector s ty a {-# INLINE enumFromN #-} enumFromN = G.enumFromN -- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+y@, -- @x+y+y@ etc. This operations is usually more efficient than 'enumFromThenTo'. -- -- > enumFromStepN 1 0.1 5 = <1,1.1,1.2,1.3,1.4> enumFromStepN :: (VECTOR s ty a, Num a) => a -> a -> Int -> Vector s ty a {-# INLINE enumFromStepN #-} enumFromStepN = G.enumFromStepN -- | /O(n)/ Enumerate values from @x@ to @y@. -- -- /WARNING:/ This operation can be very inefficient. If at all possible, use -- 'enumFromN' instead. enumFromTo :: (VECTOR s ty a, Enum a) => a -> a -> Vector s ty a {-# INLINE enumFromTo #-} enumFromTo = G.enumFromTo -- | /O(n)/ Enumerate values from @x@ to @y@ with a specific step @z@. -- -- /WARNING:/ This operation can be very inefficient. If at all possible, use -- 'enumFromStepN' instead. enumFromThenTo :: (VECTOR s ty a, Enum a) => a -> a -> a -> Vector s ty a {-# INLINE enumFromThenTo #-} enumFromThenTo = G.enumFromThenTo -- Concatenation -- ------------- -- | /O(n)/ Prepend an element cons :: VECTOR s ty a => a -> Vector s ty a -> Vector s ty a {-# INLINE cons #-} cons = G.cons -- | /O(n)/ Append an element snoc :: VECTOR s ty a => Vector s ty a -> a -> Vector s ty a {-# INLINE snoc #-} snoc = G.snoc infixr 5 ++ -- | /O(m+n)/ Concatenate two vectors (++) :: VECTOR s ty a => Vector s ty a -> Vector s ty a -> Vector s ty a {-# INLINE (++) #-} (++) = (G.++) -- | /O(n)/ Concatenate all vectors in the list concat :: VECTOR s ty a => [Vector s ty a] -> Vector s ty a {-# INLINE concat #-} concat = G.concat -- Monadic initialisation -- ---------------------- -- | /O(n)/ Execute the monadic action the given number of times and store the -- results in a vector. replicateM :: (Monad m, VECTOR s ty a) => Int -> m a -> m (Vector s ty a) {-# INLINE replicateM #-} replicateM = G.replicateM -- | /O(n)/ Construct a vector of the given length by applying the monadic -- action to each index generateM :: (Monad m, VECTOR s ty a) => Int -> (Int -> m a) -> m (Vector s ty a) {-# INLINE generateM #-} generateM = G.generateM -- | Execute the monadic action and freeze the resulting vector. -- -- @ -- create (do { v \<- new 2; write v 0 \'a\'; write v 1 \'b\'; return v }) = \<'a','b'\> -- @ create :: VECTOR s ty a => (forall r. ST r (MVector s ty r a)) -> Vector s ty a {-# INLINE create #-} -- NOTE: eta-expanded due to http://hackage.haskell.org/trac/ghc/ticket/4120 create p = G.create p -- Restricting memory usage -- ------------------------ -- | /O(n)/ Yield the argument but force it not to retain any extra memory, -- possibly by copying it. -- -- This is especially useful when dealing with slices. For example: -- -- > force (slice 0 2 ) -- -- Here, the slice retains a reference to the huge vector. Forcing it creates -- a copy of just the elements that belong to the slice and allows the huge -- vector to be garbage collected. force :: VECTOR s ty a => Vector s ty a -> Vector s ty a {-# INLINE force #-} force = G.force -- Bulk updates -- ------------ -- | /O(m+n)/ For each pair @(i,a)@ from the list, replace the vector -- element at position @i@ by @a@. -- -- > <5,9,2,7> // [(2,1),(0,3),(2,8)] = <3,9,8,7> -- (//) :: VECTOR s ty a => Vector s ty a -- ^ initial vector (of length @m@) -> [(Int, a)] -- ^ list of index/value pairs (of length @n@) -> Vector s ty a {-# INLINE (//) #-} (//) = (G.//) {- -- | /O(m+min(n1,n2))/ For each index @i@ from the index Vector s ty and the -- corresponding value @a@ from the value vector, replace the element of the -- initial Vector s ty at position @i@ by @a@. -- -- > update_ <5,9,2,7> <2,0,2> <1,3,8> = <3,9,8,7> -- update_ :: VECTOR s ty a => Vector s ty a -- ^ initial vector (of length @m@) -> Vector Int -- ^ index vector (of length @n1@) -> Vector s ty a -- ^ value vector (of length @n2@) -> Vector s ty a {-# INLINE update_ #-} update_ = G.update_ -} {- -- | Same as ('//') but without bounds checking. unsafeUpd :: VECTOR s ty a => Vector s ty a -> [(Int, a)] -> Vector s ty a {-# INLINE unsafeUpd #-} unsafeUpd = G.unsafeUpd -} {- -- | Same as 'update_' but without bounds checking. unsafeUpdate_ :: VECTOR s ty a => Vector s ty a -> Vector Int -> Vector s ty a -> Vector s ty a {-# INLINE unsafeUpdate_ #-} unsafeUpdate_ = G.unsafeUpdate_ -} -- Accumulations -- ------------- -- | /O(m+n)/ For each pair @(i,b)@ from the list, replace the vector element -- @a@ at position @i@ by @f a b@. -- -- > accum (+) <5,9,2> [(2,4),(1,6),(0,3),(1,7)] = <5+3, 9+6+7, 2+4> accum :: VECTOR s ty a => (a -> b -> a) -- ^ accumulating function @f@ -> Vector s ty a -- ^ initial vector (of length @m@) -> [(Int,b)] -- ^ list of index/value pairs (of length @n@) -> Vector s ty a {-# INLINE accum #-} accum = G.accum {- -- | /O(m+min(n1,n2))/ For each index @i@ from the index Vector s ty and the -- corresponding value @b@ from the the value vector, -- replace the element of the initial Vector s ty at -- position @i@ by @f a b@. -- -- > accumulate_ (+) <5,9,2> <2,1,0,1> <4,6,3,7> = <5+3, 9+6+7, 2+4> -- accumulate_ :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> a) -- ^ accumulating function @f@ -> Vector s ty a -- ^ initial vector (of length @m@) -> Vector Int -- ^ index vector (of length @n1@) -> Vector s ty b -- ^ value vector (of length @n2@) -> Vector s ty a {-# INLINE accumulate_ #-} accumulate_ = G.accumulate_ -} -- | Same as 'accum' but without bounds checking. unsafeAccum :: VECTOR s ty a => (a -> b -> a) -> Vector s ty a -> [(Int,b)] -> Vector s ty a {-# INLINE unsafeAccum #-} unsafeAccum = G.unsafeAccum {- -- | Same as 'accumulate_' but without bounds checking. unsafeAccumulate_ :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> a) -> Vector s ty a -> Vector Int -> Vector s ty b -> Vector s ty a {-# INLINE unsafeAccumulate_ #-} unsafeAccumulate_ = G.unsafeAccumulate_ -} -- Permutations -- ------------ -- | /O(n)/ Reverse a vector reverse :: VECTOR s ty a => Vector s ty a -> Vector s ty a {-# INLINE reverse #-} reverse = G.reverse {- -- | /O(n)/ Yield the vector obtained by replacing each element @i@ of the -- index Vector s ty by @xs'!'i@. This is equivalent to @'map' (xs'!') is@ but is -- often much more efficient. -- -- > backpermute <0,3,2,3,1,0> = backpermute :: VECTOR s ty a => Vector s ty a -> Vector Int -> Vector s ty a {-# INLINE backpermute #-} backpermute = G.backpermute -} {- -- | Same as 'backpermute' but without bounds checking. unsafeBackpermute :: VECTOR s ty a => Vector s ty a -> Vector Int -> Vector s ty a {-# INLINE unsafeBackpermute #-} unsafeBackpermute = G.unsafeBackpermute -} -- Safe destructive updates -- ------------------------ {- -- | Apply a destructive operation to a vector. The operation will be -- performed in place if it is safe to do so and will modify a copy of the -- vector otherwise. -- -- @ -- modify (\\v -> write v 0 \'x\') ('replicate' 3 \'a\') = \<\'x\',\'a\',\'a\'\> -- @ modify :: VECTOR s ty a => (forall s. MVector s a -> ST s ()) -> Vector s ty a -> Vector s ty a {-# INLINE modify #-} modify p = G.modify p -} -- Mapping -- ------- -- | /O(n)/ Map a function over a vector map :: (VECTOR s ty a, VECTOR s ty b) => (a -> b) -> Vector s ty a -> Vector s ty b {-# INLINE map #-} map = G.map -- | /O(n)/ Apply a function to every element of a Vector s ty and its index imap :: (VECTOR s ty a, VECTOR s ty b) => (Int -> a -> b) -> Vector s ty a -> Vector s ty b {-# INLINE imap #-} imap = G.imap -- | Map a function over a Vector s ty and concatenate the results. concatMap :: (VECTOR s ty a, VECTOR s ty b) => (a -> Vector s ty b) -> Vector s ty a -> Vector s ty b {-# INLINE concatMap #-} concatMap = G.concatMap -- Monadic mapping -- --------------- -- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a -- vector of results mapM :: (Monad m, VECTOR s ty a, VECTOR s ty b) => (a -> m b) -> Vector s ty a -> m (Vector s ty b) {-# INLINE mapM #-} mapM = G.mapM -- | /O(n)/ Apply the monadic action to all elements of a Vector s ty and ignore the -- results mapM_ :: (Monad m, VECTOR s ty a) => (a -> m b) -> Vector s ty a -> m () {-# INLINE mapM_ #-} mapM_ = G.mapM_ -- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a -- vector of results. Equvalent to @flip 'mapM'@. forM :: (Monad m, VECTOR s ty a, VECTOR s ty b) => Vector s ty a -> (a -> m b) -> m (Vector s ty b) {-# INLINE forM #-} forM = G.forM -- | /O(n)/ Apply the monadic action to all elements of a Vector s ty and ignore the -- results. Equivalent to @flip 'mapM_'@. forM_ :: (Monad m, VECTOR s ty a) => Vector s ty a -> (a -> m b) -> m () {-# INLINE forM_ #-} forM_ = G.forM_ -- Zipping -- ------- -- | /O(min(m,n))/ Zip two vectors with the given function. zipWith :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c) => (a -> b -> c) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c {-# INLINE zipWith #-} zipWith f xs ys = G.unstream (Stream.zipWith f (G.stream xs) (G.stream ys)) -- | Zip three vectors with the given function. zipWith3 :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c, VECTOR s tyd d) => (a -> b -> c -> d) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c -> Vector s tyd d {-# INLINE zipWith3 #-} zipWith3 f as bs cs = G.unstream (Stream.zipWith3 f (G.stream as) (G.stream bs) (G.stream cs)) zipWith4 :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c, VECTOR s tyd d, VECTOR s tye e) => (a -> b -> c -> d -> e) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c -> Vector s tyd d -> Vector s tye e {-# INLINE zipWith4 #-} zipWith4 f as bs cs ds = G.unstream (Stream.zipWith4 f (G.stream as) (G.stream bs) (G.stream cs) (G.stream ds)) zipWith5 :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c, VECTOR s tyd d, VECTOR s tye e, VECTOR s tyf f) => (a -> b -> c -> d -> e -> f) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c -> Vector s tyd d -> Vector s tye e -> Vector s tyf f {-# INLINE zipWith5 #-} zipWith5 f as bs cs ds es = G.unstream (Stream.zipWith5 f (G.stream as) (G.stream bs) (G.stream cs) (G.stream ds) (G.stream es)) zipWith6 :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c, VECTOR s tyd d, VECTOR s tye e, VECTOR s tyf f, VECTOR s tyg g) => (a -> b -> c -> d -> e -> f -> g) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c -> Vector s tyd d -> Vector s tye e -> Vector s tyf f -> Vector s tyg g {-# INLINE zipWith6 #-} zipWith6 f as bs cs ds es fs = G.unstream (Stream.zipWith6 f (G.stream as) (G.stream bs) (G.stream cs) (G.stream ds) (G.stream es) (G.stream fs)) -- | /O(min(m,n))/ Zip two vectors with a function that also takes the -- elements' indices. izipWith :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c) => (Int -> a -> b -> c) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c {-# INLINE izipWith #-} izipWith f as bs = G.unstream (Stream.zipWith (uncurry f) (Stream.indexed (G.stream as)) (G.stream bs)) -- | Zip three vectors and their indices with the given function. izipWith3 :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c, VECTOR s tyd d) => (Int -> a -> b -> c -> d) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c -> Vector s tyd d {-# INLINE izipWith3 #-} izipWith3 f as bs cs = G.unstream (Stream.zipWith3 (uncurry f) (Stream.indexed (G.stream as)) (G.stream bs) (G.stream cs)) izipWith4 :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c, VECTOR s tyd d, VECTOR s tye e) => (Int -> a -> b -> c -> d -> e) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c -> Vector s tyd d -> Vector s tye e {-# INLINE izipWith4 #-} izipWith4 f as bs cs ds = G.unstream (Stream.zipWith4 (uncurry f) (Stream.indexed (G.stream as)) (G.stream bs) (G.stream cs) (G.stream ds)) izipWith5 :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c, VECTOR s tyd d, VECTOR s tye e, VECTOR s tyf f) => (Int -> a -> b -> c -> d -> e -> f) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c -> Vector s tyd d -> Vector s tye e -> Vector s tyf f {-# INLINE izipWith5 #-} izipWith5 f as bs cs ds es = G.unstream (Stream.zipWith5 (uncurry f) (Stream.indexed (G.stream as)) (G.stream bs) (G.stream cs) (G.stream ds) (G.stream es)) izipWith6 :: (VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c, VECTOR s tyd d, VECTOR s tye e, VECTOR s tyf f, VECTOR s tyg g) => (Int -> a -> b -> c -> d -> e -> f -> g) -> Vector s tya a -> Vector s tyb b -> Vector s tyc c -> Vector s tyd d -> Vector s tye e -> Vector s tyf f -> Vector s tyg g {-# INLINE izipWith6 #-} izipWith6 f as bs cs ds es fs = G.unstream (Stream.zipWith6 (uncurry f) (Stream.indexed (G.stream as)) (G.stream bs) (G.stream cs) (G.stream ds) (G.stream es) (G.stream fs)) -- Monadic zipping -- --------------- {- -- | /O(min(m,n))/ Zip the two vectors with the monadic action and yield a -- vector of results zipWithM :: (Monad m, VECTOR s tya a, VECTOR s tyb b, VECTOR s tyc c) => (a -> b -> m c) -> Vector s tya a -> Vector s tyb b -> m (Vector s tyc c) {-# INLINE zipWithM #-} zipWithM f as bs = G.unstreamM (Stream.zipWithM f (G.stream as) (G.stream bs)) -} -- | /O(min(m,n))/ Zip the two vectors with the monadic action and ignore the -- results zipWithM_ :: (Monad m, VECTOR s tya a, VECTOR s tyb b) => (a -> b -> m c) -> Vector s tya a -> Vector s tyb b -> m () {-# INLINE zipWithM_ #-} zipWithM_ f as bs = Stream.zipWithM_ f (G.stream as) (G.stream bs) -- Filtering -- --------- -- | /O(n)/ Drop elements that do not satisfy the predicate filter :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> Vector s ty a {-# INLINE filter #-} filter = G.filter -- | /O(n)/ Drop elements that do not satisfy the predicate which is applied to -- values and their indices ifilter :: VECTOR s ty a => (Int -> a -> Bool) -> Vector s ty a -> Vector s ty a {-# INLINE ifilter #-} ifilter = G.ifilter -- | /O(n)/ Drop elements that do not satisfy the monadic predicate filterM :: (Monad m, VECTOR s ty a) => (a -> m Bool) -> Vector s ty a -> m (Vector s ty a) {-# INLINE filterM #-} filterM = G.filterM -- | /O(n)/ Yield the longest prefix of elements satisfying the predicate -- with copying. takeWhile :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> Vector s ty a {-# INLINE takeWhile #-} takeWhile = G.takeWhile -- | /O(n)/ Drop the longest prefix of elements that satisfy the predicate -- with copying. dropWhile :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> Vector s ty a {-# INLINE dropWhile #-} dropWhile = G.dropWhile -- Parititioning -- ------------- -- | /O(n)/ Split the vector in two parts, the first one containing those -- elements that satisfy the predicate and the second one those that don't. The -- relative order of the elements is preserved at the cost of a sometimes -- reduced performance compared to 'unstablePartition'. partition :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> (Vector s ty a, Vector s ty a) {-# INLINE partition #-} partition = G.partition -- | /O(n)/ Split the vector in two parts, the first one containing those -- elements that satisfy the predicate and the second one those that don't. -- The order of the elements is not preserved but the operation is often -- faster than 'partition'. unstablePartition :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> (Vector s ty a, Vector s ty a) {-# INLINE unstablePartition #-} unstablePartition = G.unstablePartition -- | /O(n)/ Split the vector into the longest prefix of elements that satisfy -- the predicate and the rest with copying. span :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> (Vector s ty a, Vector s ty a) {-# INLINE span #-} span = G.span -- | /O(n)/ Split the vector into the longest prefix of elements that do not -- satisfy the predicate and the rest with copying. break :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> (Vector s ty a, Vector s ty a) {-# INLINE break #-} break = G.break -- Searching -- --------- infix 4 `elem` -- | /O(n)/ Check if the vector contains an element elem :: (VECTOR s ty a, Eq a) => a -> Vector s ty a -> Bool {-# INLINE elem #-} elem = G.elem infix 4 `notElem` -- | /O(n)/ Check if the vector does not contain an element (inverse of 'elem') notElem :: (VECTOR s ty a, Eq a) => a -> Vector s ty a -> Bool {-# INLINE notElem #-} notElem = G.notElem -- | /O(n)/ Yield 'Just' the first element matching the predicate or 'Nothing' -- if no such element exists. find :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> Maybe a {-# INLINE find #-} find = G.find -- | /O(n)/ Yield 'Just' the index of the first element matching the predicate -- or 'Nothing' if no such element exists. findIndex :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> Maybe Int {-# INLINE findIndex #-} findIndex = G.findIndex {- -- | /O(n)/ Yield the indices of elements satisfying the predicate in ascending -- order. findIndices :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> Vector Int {-# INLINE findIndices #-} findIndices = G.findIndices -} -- | /O(n)/ Yield 'Just' the index of the first occurence of the given element or -- 'Nothing' if the vector does not contain the element. This is a specialised -- version of 'findIndex'. elemIndex :: (VECTOR s ty a, Eq a) => a -> Vector s ty a -> Maybe Int {-# INLINE elemIndex #-} elemIndex = G.elemIndex {- -- | /O(n)/ Yield the indices of all occurences of the given element in -- ascending order. This is a specialised version of 'findIndices'. elemIndices :: (VECTOR s ty a, Eq a) => a -> Vector s ty a -> Vector Int {-# INLINE elemIndices #-} elemIndices = G.elemIndices -} -- Folding -- ------- -- | /O(n)/ Left fold foldl :: VECTOR s ty b => (a -> b -> a) -> a -> Vector s ty b -> a {-# INLINE foldl #-} foldl = G.foldl -- | /O(n)/ Left fold on non-empty vectors foldl1 :: VECTOR s ty a => (a -> a -> a) -> Vector s ty a -> a {-# INLINE foldl1 #-} foldl1 = G.foldl1 -- | /O(n)/ Left fold with strict accumulator foldl' :: VECTOR s ty b => (a -> b -> a) -> a -> Vector s ty b -> a {-# INLINE foldl' #-} foldl' = G.foldl' -- | /O(n)/ Left fold on non-empty vectors with strict accumulator foldl1' :: VECTOR s ty a => (a -> a -> a) -> Vector s ty a -> a {-# INLINE foldl1' #-} foldl1' = G.foldl1' -- | /O(n)/ Right fold foldr :: VECTOR s ty a => (a -> b -> b) -> b -> Vector s ty a -> b {-# INLINE foldr #-} foldr = G.foldr -- | /O(n)/ Right fold on non-empty vectors foldr1 :: VECTOR s ty a => (a -> a -> a) -> Vector s ty a -> a {-# INLINE foldr1 #-} foldr1 = G.foldr1 -- | /O(n)/ Right fold with a strict accumulator foldr' :: VECTOR s ty a => (a -> b -> b) -> b -> Vector s ty a -> b {-# INLINE foldr' #-} foldr' = G.foldr' -- | /O(n)/ Right fold on non-empty vectors with strict accumulator foldr1' :: VECTOR s ty a => (a -> a -> a) -> Vector s ty a -> a {-# INLINE foldr1' #-} foldr1' = G.foldr1' -- | /O(n)/ Left fold (function applied to each element and its index) ifoldl :: VECTOR s ty b => (a -> Int -> b -> a) -> a -> Vector s ty b -> a {-# INLINE ifoldl #-} ifoldl = G.ifoldl -- | /O(n)/ Left fold with strict accumulator (function applied to each element -- and its index) ifoldl' :: VECTOR s ty b => (a -> Int -> b -> a) -> a -> Vector s ty b -> a {-# INLINE ifoldl' #-} ifoldl' = G.ifoldl' -- | /O(n)/ Right fold (function applied to each element and its index) ifoldr :: VECTOR s ty a => (Int -> a -> b -> b) -> b -> Vector s ty a -> b {-# INLINE ifoldr #-} ifoldr = G.ifoldr -- | /O(n)/ Right fold with strict accumulator (function applied to each -- element and its index) ifoldr' :: VECTOR s ty a => (Int -> a -> b -> b) -> b -> Vector s ty a -> b {-# INLINE ifoldr' #-} ifoldr' = G.ifoldr' -- Specialised folds -- ----------------- {- -- | /O(n)/ Check if all elements satisfy the predicate. all :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> Bool {-# INLINE all #-} all = G.all -- | /O(n)/ Check if any element satisfies the predicate. any :: VECTOR s ty a => (a -> Bool) -> Vector s ty a -> Bool {-# INLINE any #-} any = G.any -- | /O(n)/ Check if all elements are 'True' and :: Vector 'Logical Bool -> R.Logical {-# INLINE and #-} and = G.and -- FIXME -- | /O(n)/ Check if any element is 'True' or :: Vector 'Logical Bool -> R.Logical {-# INLINE or #-} or = G.or -} -- | /O(n)/ Compute the sum of the elements sum :: (VECTOR s ty a, Num a) => Vector s ty a -> a {-# INLINE sum #-} sum = G.sum -- | /O(n)/ Compute the produce of the elements product :: (VECTOR s ty a, Num a) => Vector s ty a -> a {-# INLINE product #-} product = G.product -- | /O(n)/ Yield the maximum element of the vector. The vector may not be -- empty. maximum :: (VECTOR s ty a, Ord a) => Vector s ty a -> a {-# INLINE maximum #-} maximum = G.maximum -- | /O(n)/ Yield the maximum element of the Vector s ty according to the given -- comparison function. The vector may not be empty. maximumBy :: VECTOR s ty a => (a -> a -> Ordering) -> Vector s ty a -> a {-# INLINE maximumBy #-} maximumBy = G.maximumBy -- | /O(n)/ Yield the minimum element of the vector. The vector may not be -- empty. minimum :: (VECTOR s ty a, Ord a) => Vector s ty a -> a {-# INLINE minimum #-} minimum = G.minimum -- | /O(n)/ Yield the minimum element of the Vector s ty according to the given -- comparison function. The vector may not be empty. minimumBy :: VECTOR s ty a => (a -> a -> Ordering) -> Vector s ty a -> a {-# INLINE minimumBy #-} minimumBy = G.minimumBy -- | /O(n)/ Yield the index of the maximum element of the vector. The vector -- may not be empty. maxIndex :: (VECTOR s ty a, Ord a) => Vector s ty a -> Int {-# INLINE maxIndex #-} maxIndex = G.maxIndex -- | /O(n)/ Yield the index of the maximum element of the Vector s ty according to -- the given comparison function. The vector may not be empty. maxIndexBy :: VECTOR s ty a => (a -> a -> Ordering) -> Vector s ty a -> Int {-# INLINE maxIndexBy #-} maxIndexBy = G.maxIndexBy -- | /O(n)/ Yield the index of the minimum element of the vector. The vector -- may not be empty. minIndex :: (VECTOR s ty a, Ord a) => Vector s ty a -> Int {-# INLINE minIndex #-} minIndex = G.minIndex -- | /O(n)/ Yield the index of the minimum element of the Vector s ty according to -- the given comparison function. The vector may not be empty. minIndexBy :: VECTOR s ty a => (a -> a -> Ordering) -> Vector s ty a -> Int {-# INLINE minIndexBy #-} minIndexBy = G.minIndexBy -- Monadic folds -- ------------- -- | /O(n)/ Monadic fold foldM :: (Monad m, VECTOR s ty b) => (a -> b -> m a) -> a -> Vector s ty b -> m a {-# INLINE foldM #-} foldM = G.foldM -- | /O(n)/ Monadic fold over non-empty vectors fold1M :: (Monad m, VECTOR s ty a) => (a -> a -> m a) -> Vector s ty a -> m a {-# INLINE fold1M #-} fold1M = G.fold1M -- | /O(n)/ Monadic fold with strict accumulator foldM' :: (Monad m, VECTOR s ty b) => (a -> b -> m a) -> a -> Vector s ty b -> m a {-# INLINE foldM' #-} foldM' = G.foldM' -- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator fold1M' :: (Monad m, VECTOR s ty a) => (a -> a -> m a) -> Vector s ty a -> m a {-# INLINE fold1M' #-} fold1M' = G.fold1M' -- | /O(n)/ Monadic fold that discards the result foldM_ :: (Monad m, VECTOR s ty b) => (a -> b -> m a) -> a -> Vector s ty b -> m () {-# INLINE foldM_ #-} foldM_ = G.foldM_ -- | /O(n)/ Monadic fold over non-empty vectors that discards the result fold1M_ :: (Monad m, VECTOR s ty a) => (a -> a -> m a) -> Vector s ty a -> m () {-# INLINE fold1M_ #-} fold1M_ = G.fold1M_ -- | /O(n)/ Monadic fold with strict accumulator that discards the result foldM'_ :: (Monad m, VECTOR s ty b) => (a -> b -> m a) -> a -> Vector s ty b -> m () {-# INLINE foldM'_ #-} foldM'_ = G.foldM'_ -- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator -- that discards the result fold1M'_ :: (Monad m, VECTOR s ty a) => (a -> a -> m a) -> Vector s ty a -> m () {-# INLINE fold1M'_ #-} fold1M'_ = G.fold1M'_ -- Prefix sums (scans) -- ------------------- -- | /O(n)/ Prescan -- -- @ -- prescanl f z = 'init' . 'scanl' f z -- @ -- -- Example: @prescanl (+) 0 \<1,2,3,4\> = \<0,1,3,6\>@ -- prescanl :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> a) -> a -> Vector s ty b -> Vector s ty a {-# INLINE prescanl #-} prescanl = G.prescanl -- | /O(n)/ Prescan with strict accumulator prescanl' :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> a) -> a -> Vector s ty b -> Vector s ty a {-# INLINE prescanl' #-} prescanl' = G.prescanl' -- | /O(n)/ Scan -- -- @ -- postscanl f z = 'tail' . 'scanl' f z -- @ -- -- Example: @postscanl (+) 0 \<1,2,3,4\> = \<1,3,6,10\>@ -- postscanl :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> a) -> a -> Vector s ty b -> Vector s ty a {-# INLINE postscanl #-} postscanl = G.postscanl -- | /O(n)/ Scan with strict accumulator postscanl' :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> a) -> a -> Vector s ty b -> Vector s ty a {-# INLINE postscanl' #-} postscanl' = G.postscanl' -- | /O(n)/ Haskell-style scan -- -- > scanl f z = -- > where y1 = z -- > yi = f y(i-1) x(i-1) -- -- Example: @scanl (+) 0 \<1,2,3,4\> = \<0,1,3,6,10\>@ -- scanl :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> a) -> a -> Vector s ty b -> Vector s ty a {-# INLINE scanl #-} scanl = G.scanl -- | /O(n)/ Haskell-style scan with strict accumulator scanl' :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> a) -> a -> Vector s ty b -> Vector s ty a {-# INLINE scanl' #-} scanl' = G.scanl' -- | /O(n)/ Scan over a non-empty vector -- -- > scanl f = -- > where y1 = x1 -- > yi = f y(i-1) xi -- scanl1 :: VECTOR s ty a => (a -> a -> a) -> Vector s ty a -> Vector s ty a {-# INLINE scanl1 #-} scanl1 = G.scanl1 -- | /O(n)/ Scan over a non-empty vector with a strict accumulator scanl1' :: VECTOR s ty a => (a -> a -> a) -> Vector s ty a -> Vector s ty a {-# INLINE scanl1' #-} scanl1' = G.scanl1' -- | /O(n)/ Right-to-left prescan -- -- @ -- prescanr f z = 'reverse' . 'prescanl' (flip f) z . 'reverse' -- @ -- prescanr :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> b) -> b -> Vector s ty a -> Vector s ty b {-# INLINE prescanr #-} prescanr = G.prescanr -- | /O(n)/ Right-to-left prescan with strict accumulator prescanr' :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> b) -> b -> Vector s ty a -> Vector s ty b {-# INLINE prescanr' #-} prescanr' = G.prescanr' -- | /O(n)/ Right-to-left scan postscanr :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> b) -> b -> Vector s ty a -> Vector s ty b {-# INLINE postscanr #-} postscanr = G.postscanr -- | /O(n)/ Right-to-left scan with strict accumulator postscanr' :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> b) -> b -> Vector s ty a -> Vector s ty b {-# INLINE postscanr' #-} postscanr' = G.postscanr' -- | /O(n)/ Right-to-left Haskell-style scan scanr :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> b) -> b -> Vector s ty a -> Vector s ty b {-# INLINE scanr #-} scanr = G.scanr -- | /O(n)/ Right-to-left Haskell-style scan with strict accumulator scanr' :: (VECTOR s ty a, VECTOR s ty b) => (a -> b -> b) -> b -> Vector s ty a -> Vector s ty b {-# INLINE scanr' #-} scanr' = G.scanr' -- | /O(n)/ Right-to-left scan over a non-empty vector scanr1 :: VECTOR s ty a => (a -> a -> a) -> Vector s ty a -> Vector s ty a {-# INLINE scanr1 #-} scanr1 = G.scanr1 -- | /O(n)/ Right-to-left scan over a non-empty vector with a strict -- accumulator scanr1' :: VECTOR s ty a => (a -> a -> a) -> Vector s ty a -> Vector s ty a {-# INLINE scanr1' #-} scanr1' = G.scanr1' -- Conversions - Lists -- ------------------------ -- | /O(n)/ Convert a vector to a list toList :: VECTOR s ty a => Vector s ty a -> [a] {-# INLINE toList #-} toList = G.toList -- | /O(n)/ Convert a list to a vector fromList :: VECTOR s ty a => [a] -> Vector s ty a {-# INLINE fromList #-} fromList xs = G.fromListN (Prelude.length xs) xs -- | /O(n)/ Convert the first @n@ elements of a list to a vector -- -- @ -- fromListN n xs = 'fromList' ('take' n xs) -- @ fromListN :: VECTOR s ty a => Int -> [a] -> Vector s ty a {-# INLINE fromListN #-} fromListN = G.fromListN -- Conversions - Unsafe casts -- -------------------------- -- Conversions - Mutable vectors -- ----------------------------- -- | /O(1)/ Unsafe convert a mutable vector to an immutable one with -- copying. The mutable vector may not be used after this operation. unsafeFreeze :: (VECTOR s ty a, PrimMonad m) => MVector s ty (PrimState m) a -> m (Vector s ty a) {-# INLINE unsafeFreeze #-} unsafeFreeze = G.unsafeFreeze -- | /O(1)/ Unsafely convert an immutable vector to a mutable one with -- copying. The immutable vector may not be used after this operation. unsafeThaw :: (VECTOR s ty a, PrimMonad m) => Vector s ty a -> m (MVector s ty (PrimState m) a) {-# INLINE unsafeThaw #-} unsafeThaw = G.unsafeThaw -- | /O(n)/ Yield a mutable copy of the immutable vector. thaw :: (VECTOR s ty a, PrimMonad m) => Vector s ty a -> m (MVector s ty (PrimState m) a) {-# INLINE thaw #-} thaw = G.thaw -- | /O(n)/ Yield an immutable copy of the mutable vector. freeze :: (VECTOR s ty a, PrimMonad m) => MVector s ty (PrimState m) a -> m (Vector s ty a) {-# INLINE freeze #-} freeze = G.freeze -- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must -- have the same length. This is not checked. unsafeCopy :: (VECTOR s ty a, PrimMonad m) => MVector s ty (PrimState m) a -> Vector s ty a -> m () {-# INLINE unsafeCopy #-} unsafeCopy = G.unsafeCopy -- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must -- have the same length. copy :: (VECTOR s ty a, PrimMonad m) => MVector s ty (PrimState m) a -> Vector s ty a -> m () {-# INLINE copy #-} copy = G.copy -- | O(1) Inplace convertion to Storable vector. unsafeToStorable :: VECTOR s ty a => Vector s ty a -- ^ target -> Storable.Vector a -- ^ source {-# INLINE unsafeToStorable #-} unsafeToStorable v = unsafeInlineIO $ G.unsafeFreeze =<< Mutable.unsafeToStorable =<< G.unsafeThaw v -- | O(N) Convertion from storable vector to SEXP vector. fromStorable :: VECTOR s ty a => Storable.Vector a -> Vector s ty a {-# INLINE fromStorable #-} fromStorable v = unsafeInlineIO $ G.unsafeFreeze =<< Mutable.fromStorable =<< G.unsafeThaw v