{-# OPTIONS_GHC -fno-warn-unused-imports #-} {-# OPTIONS_HADDOCK show-extensions #-} -- | Module : InfBackprop.Tutorial -- Copyright : (C) 2023 Alexey Tochin -- License : BSD3 (see the file LICENSE) -- Maintainer : Alexey Tochin <Alexey.Tochin@gmail.com> -- -- Tutorial [inf-backprop](https://hackage.haskell.org/package/inf-backprop) package. module InfBackprop.Tutorial ( -- * Quick start -- $quick_start -- * Derivatives for symbolic expressions -- $derivatives_for_symbolic_expressions -- * Symbolic expressions visualization -- $symbolic_expressions_visualization -- * How it works -- $how_it_works -- * Declaring custom derivative -- $declaring_custom_derivative -- * Differentiation of monadic function -- $differentiation_monadic_types -- * Differentiation with logging -- $differentiation_with_logging ) where import Control.Arrow (Kleisli, (<<<), (>>>)) import Control.Monad.Logger (MonadLogger) import Debug.SimpleExpr (SimpleExpr, simplify) import InfBackprop ( Backprop, BackpropFunc, backward, call, cos, derivative, first, forward, pow, pureBackprop, second, (***), ) import Prelude (Maybe (Just, Nothing), Monad) -- $quick_start -- >>> :set -XNoImplicitPrelude -- >>> import Prelude (Float, fmap) -- >>> import InfBackprop (BackpropFunc, call, derivative, derivativeN, pow) -- -- We can define differentiable function -- -- \[ -- f(x) := x^2 -- \] -- -- as follows -- -- >>> smoothF = pow 2 :: BackpropFunc Float Float -- -- where 'pow' is a power differentiable function and -- 'BackpropFunc'@ :: * -> * -> * @ -- is a type for infinitely differentiable (smooth) functions. -- We can get the function values by 'call' method like -- -- >>> f = call smoothF :: Float -> Float -- >>> fmap f [-3, -2, -1, 0, 1, 2, 3] -- [9.0,4.0,1.0,0.0,1.0,4.0,9.0] -- -- as well as the first derivative by 'derivative', which is -- -- \[ -- f'(x) = 2 \cdot x -- \] -- -- >>> df = derivative smoothF :: Float -> Float -- >>> fmap df [-3, -2, -1, 0, 1, 2, 3] -- [-6.0,-4.0,-2.0,0.0,2.0,4.0,6.0] -- -- or the second derivative -- -- \[ -- f''(x) = 2 -- \] -- -- >>> d2f = derivativeN 2 smoothF :: Float -> Float -- >>> fmap d2f [-3, -2, -1, 0, 1, 2, 3] -- [2.0,2.0,2.0,2.0,2.0,2.0,2.0] -- -- and so on. -- -- A composition of two functions like -- -- \[ -- g(x) := \log x^3 -- \] -- -- must be defined with the categorical composition '(>>>)' (or '(<<<)') -- -- >>> import InfBackprop (log) -- >>> import Control.Category ((>>>), (<<<)) -- >>> smoothG = pow 3 >>> log -- -- For more complicated expressions, for example, -- -- \[ -- h(x) := x^2 + x^3 -- \] -- -- we use arrow notations '(***)', 'first' and 'second' as follows -- -- >>> import InfBackprop ((+), dup) -- >>> import Control.CatBifunctor ((***)) -- -- >>> smoothH = dup >>> (pow 2 *** pow 3) >>> (+) :: BackpropFunc Float Float -- -- where -- -- @ -- dup :: BackpropFunc a (a, a) -- @ -- -- is differentiable function that simply splits the single implicit argument @x@ into the tuple '(x, x)'. -- THis is needed path tje implicit @x@ to two independent functions 'pow' @2@ and 'pow' @3@. -- The last -- -- @ -- (+) :: BackpropFunc (a, a) a -- @ -- -- operation transforms the pair of implicit arguments into their sum. -- $derivatives_for_symbolic_expressions -- -- >>> import Prelude (($)) -- >>> import Control.Category ((<<<)) -- >>> import InfBackprop (BackpropFunc, call, derivative, derivativeN, sin, pow, (**), pow, setSecond, const) -- -- We use -- [simple-expr](https://hackage.haskell.org/package/simple-expr) -- package here. -- -- >>> import Debug.SimpleExpr.Expr (SimpleExpr, variable, simplify) -- -- For example a symbolic function -- -- \[ -- f(x) := \sin x^2 -- \] -- -- can be defined as follows -- -- >>> x = variable "x" -- >>> f = sin <<< pow 2 :: BackpropFunc SimpleExpr SimpleExpr -- -- see 'Debug.SimpleExpr.Tutorial' for details. -- We can call the symbolic function like -- -- >>> call f x -- sin(x·x) -- -- and find the symbolic derivative -- -- \[ -- \frac{d}{d x} f(x) = \frac{d}{d x} \sin x^2 = 2\, x \cos x^2 -- \] -- -- as follows -- -- >>> simplify $ derivative f x -- cos(x·x)·(2·x) -- -- as well as the second and higher derivatives -- -- >>> simplify $ derivativeN 2 f x -- (((2·x)·-(sin(x·x)))·(2·x))+(2·cos(x·x)) -- $symbolic_expressions_visualization -- The -- [simple-expr](https://hackage.haskell.org/package/simple-expr) -- package is equipped with a visulaisation tool that can be used to illustrate how the differentiation works. -- -- >>> import Control.Category ((<<<)) -- >>> import InfBackprop (call, backpropExpr) -- >>> import Debug.SimpleExpr.Expr (SimpleExpr, variable, simplify) -- >>> import Debug.SimpleExpr.GraphUtils (exprToGraph) -- >>> import Data.Graph.VisualizeAlternative (plotDGraph) -- -- As a warm up consider a trivial composition of two functions -- -- \[ -- g(f(x)) -- \] -- -- is defined as -- -- >>> x = variable "x" -- >>> call (backpropExpr "g" <<< backpropExpr "f") x -- g(f(x)) -- -- It can be plotted by -- -- @ plotExpr $ call (backpropExpr "g" <<< backpropExpr "f") x @ -- -- ![image description](doc/images/composition.png) -- -- The graph for the first derivative can depicted by -- -- @ plotExpr $ simplify $ derivative (backpropExpr "g" <<< backpropExpr "f") x @ -- -- ![image description](doc/images/composition_derivative.png) -- -- where -- 'simplify'@ :: @'SimpleExpr'@ -> @'SimpleExpr` -- is a simple removal such things like @*1@ and @+0@. -- -- As well as the second derivative is straightforward -- -- @ plotExpr $ simplify $ derivativeN 2 (backpropExpr "g" <<< backpropExpr "f") x @ -- -- ![image description](doc/images/composition_second_derivative.png) -- $how_it_works -- The idea would be clear from the example of three functions composition -- -- \[ -- g(f(h(x))) -- \] -- with a focus on function @f@. -- -- Its first derivative over @x@ is -- -- \[ -- g(f(h(x))). -- \] -- -- \[ -- h'(x) \cdot f'(h(x)) \cdot g'(f(h(x))). -- \] -- -- According to the backpropagation strategy, the order of the calculation should be as follows. -- -- 1. Find @h(x)@. -- -- 2. Find @f(h(x))@. -- -- 3. Find @g(f(h(x)))@. -- -- 4. Find the top derivative @g'(f(h(x)))@. -- -- 5. Find the next to the top derivative @f'(h(x))@. -- -- 6. Multiply @g'(f(h(x)))@ on @f'(h(x))@. -- -- 7. Find the next derivative @h'(x)@. -- -- 8. Multiply the output of point 6 on @h'(x)@. -- -- The generalization for longer composition is straightforward. -- -- All calculations related to the function @f@ can be divided into two parts. -- We have to find @f@ of @h(x)@ first (forward step) and then the derivative @f'@ of the same argument @h(x)@ and -- multiply it on the derivative @g'(f(h(x)))@ obtained during the similar calculations for @g@ (backward step). -- Notice that the value of @h(x)@ is reused on the backward step. -- To implement this, we define type 'Backprop' (see the corresponding -- documentation for details). -- $declaring_custom_derivative -- >>> import Prelude (Float) -- >>> import qualified Prelude -- >>> import Control.Category ((>>>)) -- >>> import InfBackprop ((*), negate, dup, BackpropFunc, Backprop(MkBackprop), second) -- -- As an illustrative example a differentiable version of 'cos' numerical function can be defined as follows -- (see the documentation for 'Backprop' for details) -- -- @ -- cos :: BackpropFunc Float Float -- cos = MkBackprop call' forward' backward' where -- call' :: Float -> Float -- call' = Prelude.cos -- -- forward' :: BackpropFunc Float (Float, Float) -- forward' = dup >>> first cos -- -- backward' :: BackpropFunc (Float, Float) Float -- backward' = second (sin >>> negate) >>> (*) -- -- sin :: BackpropFunc Float Float -- sin = ... -- @ -- -- Here we use @Prelude@ implementation for ordinary @cos@ function in 'call'. -- The forward function is differentiable (which is needed for further derivatives) function -- with two output values. -- Roughly speaking 'forward' is -- @x -> (sin x, x)@. -- The first term of the tuple is just @sin@ and -- the second terms @x@ in the tuple is the value to be reused on the backward step. -- The 'backward' is -- @(dy, x) -> dy * (-cos x)@, -- where @dy@ is the derivative found on the previous backward step and the second value is @x@ stored by `forward`. -- We simply multiply with @(*)@ the derivative @dy@ on the derivative of @sin@ that is @-cos@. -- -- The stored value is not necessary just @x@. It could be anything useful for the backward step, see for example -- the implementation for @exp@ and the corresponding -- [example](InfBackprop.Tutorial#differentiation_with_logging) -- below. -- $differentiation_monadic_types #differentiation_monadic_types# -- Differentiable versions of monadic functions @a -> m b@ can also be backpropagated. -- For example, consider a real-valued power function defined for positive real numbers. -- For a negative number, it returns 'Nothing', which is a signal to stop computing the derivative and return 'Nothing' -- in the spirit of the behavior of the monad 'Maybe'. -- For this purpose, we can use that the type 'Backprop' type is defined for any category, -- not only for functions @(->)@. -- In particular, we can try 'Backprop'@(@'Kleisli' 'Maybe'@)@ instead of 'Backprop'@(->)@ from the previous sections. -- -- >>> import Prelude (Maybe, Maybe(Just, Nothing), ($), Ord, (>), Float) -- >>> import InfBackprop (Backprop(MkBackprop), derivative, dup, (*), linear, pureBackprop, first, second) -- >>> import Control.Arrow (Kleisli(Kleisli), runKleisli, (>>>)) -- >>> import qualified NumHask as NH -- -- The functoin -- -- @ -- pureBackprop :: Monad m => Backprop (->) a b -> Backprop (Kleisli m) a b -- @ -- -- is to trivially lift an ordinary backpropagation functions to the monadic function type. -- -- Define the power function as follows -- -- >>> :{ -- powR :: forall a. (Ord a, NH.ExpField a) => -- a -> Backprop (Kleisli Maybe) a a -- powR p = MkBackprop call' forward' backward' -- where -- call' :: Kleisli Maybe a a -- call' = Kleisli $ \x -> if x > NH.zero -- then Just $ x NH.** p -- else Nothing -- -- -- forward' :: Backprop (Kleisli Maybe) a (a, a) -- forward' = pureBackprop dup >>> first (powR p) -- -- -- backward' :: Backprop (Kleisli Maybe) (a, a) a -- backward' = second der >>> pureBackprop (*) where -- der = powR (p NH.- NH.one) >>> pureBackprop (linear p) -- :} -- -- and calculate -- -- \[ -- \frac{d}{dx} x^{\frac12} = \frac{1}{2 \sqrt{x}} -- \] -- -- for @x=4@ and @x=-4@ like -- -- >>> runKleisli (derivative (powR 0.5)) (4 :: Float) -- Just 0.25 -- >>> runKleisli (derivative (powR 0.5)) (-4 :: Float) -- Nothing -- $differentiation_with_logging #differentiation_with_logging# -- -- Our objective now is to add logging to the derivative calculation. -- The type 'Backprop' @cat a b@ type is parametrized by a category @cat@, input @a@ and output @b@. -- If @cat@ is @(->)@ the type is reduced to 'BackpropFunc' we worked with above. -- To add logging to the calculation we shall replace @(->)@ by -- 'MonadLogger' @m =>@ 'Kleisli' @m@. -- We will need the imports below -- -- >>> import Prelude (Integer, Float, ($), (+), (*)) -- >>> import Control.Monad.Logger (runStdoutLoggingT, MonadLogger) -- >>> import Control.Arrow ((>>>), runKleisli, Kleisli) -- >>> import InfBackprop (derivative, loggingBackpropExpr) -- >>> import Debug.SimpleExpr.Expr (variable) -- >>> import Debug.LoggingBackprop (initUnaryFunc, initBinaryFunc, pureKleisli, exp, sin) -- -- where the module 'Debug.loggingBackpropExpr' contains some useful functionality. -- For example, lifts for unary functions -- -- @ -- initUnaryFunc :: (Show a, Show b, MonadLogger m) => String -> (a -> b) -> Kleisli m a b -- @ -- -- and binary functions -- -- @ -- initBinaryFunc :: (Show a, Show b, Show c, MonadLogger m) => String -> (a -> b -> c) -> Kleisli m (a, b) c -- @ -- -- These two terms map given functions to Kleisli category terms, that allows logging during their execution. -- -- Let us first explain how it works with the following example. -- -- \[ -- f(x) = y \cdot 3 + y \cdot 4, \quad y = x + 2. -- \] -- -- This function can be defined as follows -- -- >>> :{ -- fLogging :: MonadLogger m => Kleisli m Integer Integer -- fLogging = -- initUnaryFunc "+2" (+2) >>> -- (pureKleisli (\x -> (x, x))) >>> -- (initUnaryFunc "*3" (*3) *** initUnaryFunc "*4" (*4)) >>> -- initBinaryFunc "sum" (+) -- :} -- -- We run the calculation with @ x = 5 @ as follows -- -- >>> runStdoutLoggingT $ runKleisli fLogging 5 -- [Info] Calculating +2 of 5 => 7 -- [Info] Calculating *3 of 7 => 21 -- [Info] Calculating *4 of 7 => 28 -- [Info] Calculating sum of 21 and 28 => 49 -- 49 -- -- We are now ready to consider an example with derivatives. -- Let us calculate a simple example as follows -- -- \[ -- \frac{d}{dx} \mathrm{f} (e^x) = e^x f'(e^x) -- \] -- -- We define symbolic function @f@ by -- -- @ -- loggingBackpropExpr :: String -> BackpropFunc SimpleExpr SimpleExpr -- @ -- -- and the entire derivative is -- -- >>> runStdoutLoggingT $ runKleisli (derivative (exp >>> loggingBackpropExpr "f")) (variable "x") -- [Info] Calculating exp of x => exp(x) -- [Info] Calculating f of exp(x) => f(exp(x)) -- [Info] Calculating f' of exp(x) => f'(exp(x)) -- [Info] Calculating multiplication of 1 and f'(exp(x)) => 1·f'(exp(x)) -- [Info] Calculating multiplication of 1·f'(exp(x)) and exp(x) => (1·f'(exp(x)))·exp(x) -- (1·f'(exp(x)))·exp(x) -- -- For illustration we can set 'f = sin' and 'x=2' -- -- \[ -- \left. \frac{d}{dx} \sin (e^x) \right|_{x=2} = e^2 \cos (e^2) -- \] -- -- >>> runStdoutLoggingT $ runKleisli (derivative (exp >>> sin)) (2 :: Float) -- [Info] Calculating exp of 2.0 => 7.389056 -- [Info] Calculating sin of 7.389056 => 0.893855 -- [Info] Calculating cos of 7.389056 => 0.44835615 -- [Info] Calculating multiplication of 1.0 and 0.44835615 => 0.44835615 -- [Info] Calculating multiplication of 0.44835615 and 7.389056 => 3.312929 -- 3.312929 -- -- The first thing to mention in these logs is that the last forward step -- @sin(exp x)@ -- is still computed, unlike the examples from the previous section. -- This is due to the monadic nature of the calculation chain, that must disappear as soon as we return to -- @(->)@ from 'Kleisli' @m@. -- -- The second thing to mention here is that the exponent -- @exp x@ -- is calculated only once thanks to the cache term passed from the `forward` to the `backward` method.