module Idris.Reflection (RConstructorDefn(..), RDataDefn(..),RFunArg(..),
RFunClause(..), RFunDefn(..), RTyDecl(..),
buildDatatypes, buildFunDefns, envTupleType, fromTTMaybe,
getArgs, mkList, rawList, rawPair, rawPairTy, reflect,
reflectArg, reflectDatatype, reflectEnv, reflectErr,
reflectFC, reflectFixity, reflectFunDefn, reflectList,
reflectName, reflectNameType, reflectRaw,
reflectRawQuotePattern, reflectRawQuote, reflectTTQuote,
reflectTTQuotePattern, reflm, reify, reifyBool, reifyEnv,
reifyFunDefn, reifyList, reifyRDataDefn, reifyRaw,
reifyReportPart, reifyReportParts, reifyTT, reifyTTName,
reifyTyDecl, rFunArgToPArg, tacN
) where
import Idris.Core.Elaborate (claim, fill, focus, getNameFrom, initElaborator,
movelast, runElab, solve)
import Idris.Core.Evaluate (Def(TyDecl), initContext, lookupDefExact,
lookupTyExact)
import Idris.Core.TT
import Idris.AbsSyntaxTree (ArgOpt(..), ElabD, Fixity(..), IState(idris_datatypes, idris_implicits, idris_patdefs, tt_ctxt),
PArg, PArg'(..), PTactic, PTactic'(..), PTerm(..),
initEState, pairCon, pairTy)
import Idris.Delaborate (delab)
import Control.Monad (liftM, liftM2, liftM4)
import Control.Monad.State.Strict (lift)
import Data.List (findIndex, (\\))
import Data.Maybe (catMaybes)
import qualified Data.Text as T
data RErasure = RErased | RNotErased deriving Show
data RPlicity = RExplicit | RImplicit | RConstraint deriving Show
data RFunArg = RFunArg { argName :: Name
, argTy :: Raw
, argPlicity :: RPlicity
, erasure :: RErasure
}
deriving Show
data RTyDecl = RDeclare Name [RFunArg] Raw deriving Show
data RTyConArg = RParameter RFunArg
| RIndex RFunArg
deriving Show
data RCtorArg = RCtorParameter RFunArg | RCtorField RFunArg deriving Show
data RDatatype = RDatatype Name [RTyConArg] Raw [(Name, [RCtorArg], Raw)] deriving Show
data RConstructorDefn = RConstructor Name [RFunArg] Raw
data RDataDefn = RDefineDatatype Name [RConstructorDefn]
rArgOpts :: RErasure -> [ArgOpt]
rArgOpts RErased = [InaccessibleArg]
rArgOpts _ = []
rFunArgToPArg :: RFunArg -> PArg
rFunArgToPArg (RFunArg n _ RExplicit e) = PExp 0 (rArgOpts e) n Placeholder
rFunArgToPArg (RFunArg n _ RImplicit e) = PImp 0 False (rArgOpts e) n Placeholder
rFunArgToPArg (RFunArg n _ RConstraint e) = PConstraint 0 (rArgOpts e) n Placeholder
data RFunClause a = RMkFunClause a a
| RMkImpossibleClause a
deriving Show
data RFunDefn a = RDefineFun Name [RFunClause a] deriving Show
reflm :: String -> Name
reflm n = sNS (sUN n) ["Reflection", "Language"]
tacN :: String -> Name
tacN str = sNS (sUN str) ["Elab", "Reflection", "Language"]
reify :: IState -> Term -> ElabD PTactic
reify _ (P _ n _) | n == reflm "Intros" = return Intros
reify _ (P _ n _) | n == reflm "Trivial" = return Trivial
reify _ (P _ n _) | n == reflm "Implementation" = return TCImplementation
reify _ (P _ n _) | n == reflm "Solve" = return Solve
reify _ (P _ n _) | n == reflm "Compute" = return Compute
reify _ (P _ n _) | n == reflm "Skip" = return Skip
reify _ (P _ n _) | n == reflm "SourceFC" = return SourceFC
reify _ (P _ n _) | n == reflm "Unfocus" = return Unfocus
reify ist t@(App _ _ _)
| (P _ f _, args) <- unApply t = reifyApp ist f args
reify _ t = fail ("Unknown tactic " ++ show t)
reifyApp :: IState -> Name -> [Term] -> ElabD PTactic
reifyApp ist t [l, r] | t == reflm "Try" = liftM2 Try (reify ist l) (reify ist r)
reifyApp _ t [Constant (I i)]
| t == reflm "Search" = return (ProofSearch True True i Nothing [] [])
reifyApp _ t [x]
| t == reflm "Refine" = do n <- reifyTTName x
return $ Refine n []
reifyApp ist t [n, ty] | t == reflm "Claim" = do n' <- reifyTTName n
goal <- reifyTT ty
return $ Claim n' (delab ist goal)
reifyApp ist t [l, r] | t == reflm "Seq" = liftM2 TSeq (reify ist l) (reify ist r)
reifyApp ist t [Constant (Str n), x]
| t == reflm "GoalType" = liftM (GoalType n) (reify ist x)
reifyApp _ t [n] | t == reflm "Intro" = liftM (Intro . (:[])) (reifyTTName n)
reifyApp ist t [t']
| t == reflm "ApplyTactic" = liftM (ApplyTactic . delab ist) (reifyTT t')
reifyApp ist t [t']
| t == reflm "Reflect" = liftM (Reflect . delab ist) (reifyTT t')
reifyApp ist t [t']
| t == reflm "ByReflection" = liftM (ByReflection . delab ist) (reifyTT t')
reifyApp _ t [t']
| t == reflm "Fill" = liftM (Fill . PQuote) (reifyRaw t')
reifyApp ist t [t']
| t == reflm "Exact" = liftM (Exact . delab ist) (reifyTT t')
reifyApp ist t [x]
| t == reflm "Focus" = liftM Focus (reifyTTName x)
reifyApp ist t [t']
| t == reflm "Rewrite" = liftM (Rewrite . delab ist) (reifyTT t')
reifyApp ist t [n, t']
| t == reflm "LetTac" = do n' <- reifyTTName n
t'' <- reifyTT t'
return $ LetTac n' (delab ist t')
reifyApp ist t [n, tt', t']
| t == reflm "LetTacTy" = do n' <- reifyTTName n
tt'' <- reifyTT tt'
t'' <- reifyTT t'
return $ LetTacTy n' (delab ist tt'') (delab ist t'')
reifyApp ist t [errs]
| t == reflm "Fail" = fmap TFail (reifyReportParts errs)
reifyApp _ f args = fail ("Unknown tactic " ++ show (f, args))
reifyBool :: Term -> ElabD Bool
reifyBool (P _ n _) | n == sNS (sUN "True") ["Bool", "Prelude"] = return True
| n == sNS (sUN "False") ["Bool", "Prelude"] = return False
reifyBool tm = fail $ "Not a Boolean: " ++ show tm
reifyInt :: Term -> ElabD Int
reifyInt (Constant (I i)) = return i
reifyInt tm = fail $ "Not an Int: " ++ show tm
reifyPair :: (Term -> ElabD a) -> (Term -> ElabD b) -> Term -> ElabD (a, b)
reifyPair left right (App _ (App _ (App _ (App _ (P _ n _) _) _) x) y)
| n == pairCon = liftM2 (,) (left x) (right y)
reifyPair left right tm = fail $ "Not a pair: " ++ show tm
reifyList :: (Term -> ElabD a) -> Term -> ElabD [a]
reifyList getElt lst =
case unList lst of
Nothing -> fail "Couldn't reify a list"
Just xs -> mapM getElt xs
reifyReportParts :: Term -> ElabD [ErrorReportPart]
reifyReportParts errs =
case unList errs of
Nothing -> fail "Failed to reify errors"
Just errs' ->
let parts = mapM reifyReportPart errs' in
case parts of
Left err -> fail $ "Couldn't reify \"Fail\" tactic - " ++ show err
Right errs'' ->
return errs''
reifyTT :: Term -> ElabD Term
reifyTT t@(App _ _ _)
| (P _ f _, args) <- unApply t = reifyTTApp f args
reifyTT t@(P _ n _)
| n == reflm "Erased" = return Erased
reifyTT t@(P _ n _)
| n == reflm "Impossible" = return Impossible
reifyTT t = fail ("Unknown reflection term: " ++ show t)
reifyTTApp :: Name -> [Term] -> ElabD Term
reifyTTApp t [nt, n, x]
| t == reflm "P" = do nt' <- reifyTTNameType nt
n' <- reifyTTName n
x' <- reifyTT x
return $ P nt' n' x'
reifyTTApp t [Constant (I i)]
| t == reflm "V" = return $ V i
reifyTTApp t [n, b, x]
| t == reflm "Bind" = do n' <- reifyTTName n
b' <- reifyTTBinder reifyTT (reflm "TT") b
x' <- reifyTT x
return $ Bind n' b' x'
reifyTTApp t [f, x]
| t == reflm "App" = do f' <- reifyTT f
x' <- reifyTT x
return $ App Complete f' x'
reifyTTApp t [c]
| t == reflm "TConst" = liftM Constant (reifyTTConst c)
reifyTTApp t [t', Constant (I i)]
| t == reflm "Proj" = do t'' <- reifyTT t'
return $ Proj t'' i
reifyTTApp t [tt]
| t == reflm "TType" = liftM TType (reifyTTUExp tt)
reifyTTApp t [tt]
| t == reflm "UType" = liftM UType (reifyUniverse tt)
reifyTTApp t args = fail ("Unknown reflection term: " ++ show (t, args))
reifyUniverse :: Term -> ElabD Universe
reifyUniverse (P _ n _) | n == reflm "AllTypes" = return AllTypes
| n == reflm "UniqueType" = return UniqueType
| n == reflm "NullType" = return NullType
reifyUniverse tm = fail ("Unknown reflection universe: " ++ show tm)
reifyRaw :: Term -> ElabD Raw
reifyRaw t@(App _ _ _)
| (P _ f _, args) <- unApply t = reifyRawApp f args
reifyRaw t@(P _ n _)
| n == reflm "RType" = return RType
reifyRaw t = fail ("Unknown reflection raw term in reifyRaw: " ++ show t)
reifyRawApp :: Name -> [Term] -> ElabD Raw
reifyRawApp t [n]
| t == reflm "Var" = liftM Var (reifyTTName n)
reifyRawApp t [n, b, x]
| t == reflm "RBind" = do n' <- reifyTTName n
b' <- reifyTTBinder reifyRaw (reflm "Raw") b
x' <- reifyRaw x
return $ RBind n' b' x'
reifyRawApp t [f, x]
| t == reflm "RApp" = liftM2 RApp (reifyRaw f) (reifyRaw x)
reifyRawApp t [c]
| t == reflm "RConstant" = liftM RConstant (reifyTTConst c)
reifyRawApp t args = fail ("Unknown reflection raw term in reifyRawApp: " ++ show (t, args))
reifyTTName :: Term -> ElabD Name
reifyTTName t
| (P _ f _, args) <- unApply t = reifyTTNameApp f args
reifyTTName t = fail ("Unknown reflection term name: " ++ show t)
reifyTTNameApp :: Name -> [Term] -> ElabD Name
reifyTTNameApp t [Constant (Str n)]
| t == reflm "UN" = return $ sUN n
reifyTTNameApp t [n, ns]
| t == reflm "NS" = do n' <- reifyTTName n
ns' <- reifyTTNamespace ns
return $ sNS n' ns'
reifyTTNameApp t [Constant (I i), Constant (Str n)]
| t == reflm "MN" = return $ sMN i n
reifyTTNameApp t [sn]
| t == reflm "SN"
, (P _ f _, args) <- unApply sn = SN <$> reifySN f args
where reifySN :: Name -> [Term] -> ElabD SpecialName
reifySN t [Constant (I i), n1, n2]
| t == reflm "WhereN" = WhereN i <$> reifyTTName n1 <*> reifyTTName n2
reifySN t [Constant (I i), n]
| t == reflm "WithN" = WithN i <$> reifyTTName n
reifySN t [n, ss]
| t == reflm "ImplementationN" =
case unList ss of
Nothing -> fail "Can't reify ImplementationN strings"
Just ss' -> ImplementationN <$> reifyTTName n <*>
pure [T.pack s | Constant (Str s) <- ss']
reifySN t [n, Constant (Str s)]
| t == reflm "ParentN" =
ParentN <$> reifyTTName n <*> pure (T.pack s)
reifySN t [n]
| t == reflm "MethodN" =
MethodN <$> reifyTTName n
reifySN t [fc, n]
| t == reflm "CaseN" =
CaseN <$> (FC' <$> reifyFC fc) <*> reifyTTName n
reifySN t [n]
| t == reflm "ImplementationCtorN" =
ImplementationCtorN <$> reifyTTName n
reifySN t [n1, n2]
| t == reflm "MetaN" =
MetaN <$> reifyTTName n1 <*> reifyTTName n2
reifySN t args = fail $ "Can't reify special name " ++ show t ++ show args
reifyTTNameApp t args = fail ("Unknown reflection term name: " ++ show (t, args))
reifyTTNamespace :: Term -> ElabD [String]
reifyTTNamespace t@(App _ _ _)
= case unApply t of
(P _ f _, [Constant StrType])
| f == sNS (sUN "Nil") ["List", "Prelude"] -> return []
(P _ f _, [Constant StrType, Constant (Str n), ns])
| f == sNS (sUN "::") ["List", "Prelude"] -> liftM (n:) (reifyTTNamespace ns)
_ -> fail ("Unknown reflection namespace arg: " ++ show t)
reifyTTNamespace t = fail ("Unknown reflection namespace arg: " ++ show t)
reifyTTNameType :: Term -> ElabD NameType
reifyTTNameType t@(P _ n _) | n == reflm "Bound" = return $ Bound
reifyTTNameType t@(P _ n _) | n == reflm "Ref" = return $ Ref
reifyTTNameType t@(App _ _ _)
= case unApply t of
(P _ f _, [Constant (I tag), Constant (I num)])
| f == reflm "DCon" -> return $ DCon tag num False
| f == reflm "TCon" -> return $ TCon tag num
_ -> fail ("Unknown reflection name type: " ++ show t)
reifyTTNameType t = fail ("Unknown reflection name type: " ++ show t)
reifyTTBinder :: (Term -> ElabD a) -> Name -> Term -> ElabD (Binder a)
reifyTTBinder reificator binderType t@(App _ _ _)
= case unApply t of
(P _ f _, bt:args) | forget bt == Var binderType
-> reifyTTBinderApp reificator f args
_ -> fail ("Mismatching binder reflection: " ++ show t)
reifyTTBinder _ _ t = fail ("Unknown reflection binder: " ++ show t)
reifyTTBinderApp :: (Term -> ElabD a) -> Name -> [Term] -> ElabD (Binder a)
reifyTTBinderApp reif f [t]
| f == reflm "Lam" = liftM (Lam RigW) (reif t)
reifyTTBinderApp reif f [t, k]
| f == reflm "Pi" = liftM2 (Pi RigW Nothing) (reif t) (reif k)
reifyTTBinderApp reif f [x, y]
| f == reflm "Let" = liftM2 (Let RigW) (reif x) (reif y)
reifyTTBinderApp reif f [t]
| f == reflm "Hole" = liftM Hole (reif t)
reifyTTBinderApp reif f [t]
| f == reflm "GHole" = liftM (GHole 0 []) (reif t)
reifyTTBinderApp reif f [x, y]
| f == reflm "Guess" = liftM2 Guess (reif x) (reif y)
reifyTTBinderApp reif f [t]
| f == reflm "PVar" = liftM (PVar RigW) (reif t)
reifyTTBinderApp reif f [t]
| f == reflm "PVTy" = liftM PVTy (reif t)
reifyTTBinderApp _ f args = fail ("Unknown reflection binder: " ++ show (f, args))
reifyTTConst :: Term -> ElabD Const
reifyTTConst (P _ n _) | n == reflm "StrType" = return StrType
reifyTTConst (P _ n _) | n == reflm "VoidType" = return VoidType
reifyTTConst (P _ n _) | n == reflm "Forgot" = return Forgot
reifyTTConst t@(App _ _ _)
| (P _ f _, [arg]) <- unApply t = reifyTTConstApp f arg
reifyTTConst t = fail ("Unknown reflection constant: " ++ show t)
reifyTTConstApp :: Name -> Term -> ElabD Const
reifyTTConstApp f aty
| f == reflm "AType" = fmap AType (reifyArithTy aty)
reifyTTConstApp f (Constant c@(I _))
| f == reflm "I" = return c
reifyTTConstApp f (Constant c@(BI _))
| f == reflm "BI" = return c
reifyTTConstApp f (Constant c@(Fl _))
| f == reflm "Fl" = return c
reifyTTConstApp f (Constant c@(Ch _))
| f == reflm "Ch" = return c
reifyTTConstApp f (Constant c@(Str _))
| f == reflm "Str" = return c
reifyTTConstApp f (Constant c@(B8 _))
| f == reflm "B8" = return c
reifyTTConstApp f (Constant c@(B16 _))
| f == reflm "B16" = return c
reifyTTConstApp f (Constant c@(B32 _))
| f == reflm "B32" = return c
reifyTTConstApp f (Constant c@(B64 _))
| f == reflm "B64" = return c
reifyTTConstApp f v@(P _ _ _) =
lift . tfail . Msg $
"Can't reify the variable " ++
show v ++
" as a constant, because its value is not statically known."
reifyTTConstApp f arg = fail ("Unknown reflection constant: " ++ show (f, arg))
reifyArithTy :: Term -> ElabD ArithTy
reifyArithTy (App _ (P _ n _) intTy) | n == reflm "ATInt" = fmap ATInt (reifyIntTy intTy)
reifyArithTy (P _ n _) | n == reflm "ATDouble" = return ATFloat
reifyArithTy x = fail ("Couldn't reify reflected ArithTy: " ++ show x)
reifyNativeTy :: Term -> ElabD NativeTy
reifyNativeTy (P _ n _) | n == reflm "IT8" = return IT8
reifyNativeTy (P _ n _) | n == reflm "IT16" = return IT16
reifyNativeTy (P _ n _) | n == reflm "IT32" = return IT32
reifyNativeTy (P _ n _) | n == reflm "IT64" = return IT64
reifyNativeTy x = fail $ "Couldn't reify reflected NativeTy " ++ show x
reifyIntTy :: Term -> ElabD IntTy
reifyIntTy (App _ (P _ n _) nt) | n == reflm "ITFixed" = fmap ITFixed (reifyNativeTy nt)
reifyIntTy (P _ n _) | n == reflm "ITNative" = return ITNative
reifyIntTy (P _ n _) | n == reflm "ITBig" = return ITBig
reifyIntTy (P _ n _) | n == reflm "ITChar" = return ITChar
reifyIntTy tm = fail $ "The term " ++ show tm ++ " is not a reflected IntTy"
reifyTTUExp :: Term -> ElabD UExp
reifyTTUExp t@(App _ _ _)
= case unApply t of
(P _ f _, [Constant (Str str), Constant (I i)])
| f == reflm "UVar" -> return $ UVar str i
(P _ f _, [Constant (I i)])
| f == reflm "UVal" -> return $ UVal i
_ -> fail ("Unknown reflection type universe expression: " ++ show t)
reifyTTUExp t = fail ("Unknown reflection type universe expression: " ++ show t)
reflCall :: String -> [Raw] -> Raw
reflCall funName args
= raw_apply (Var (reflm funName)) args
reflect :: Term -> Raw
reflect = reflectTTQuote []
reflectRaw :: Raw -> Raw
reflectRaw = reflectRawQuote []
claimTy :: Name -> Raw -> ElabD Name
claimTy n ty = do n' <- getNameFrom n
claim n' ty
return n'
intToReflectedNat :: Int -> Raw
intToReflectedNat i = if i <= 0
then Var (natN "Z")
else RApp (Var (natN "S")) (intToReflectedNat (i 1))
where natN :: String -> Name
natN n = sNS (sUN n) ["Nat", "Prelude"]
reflectFixity :: Fixity -> Raw
reflectFixity (Infixl p) = RApp (Var (tacN "Infixl")) (intToReflectedNat p)
reflectFixity (Infixr p) = RApp (Var (tacN "Infixr")) (intToReflectedNat p)
reflectFixity (InfixN p) = RApp (Var (tacN "InfixN")) (intToReflectedNat p)
reflectFixity (PrefixN p) = RApp (Var (tacN "PrefixN")) (intToReflectedNat p)
reflectTTQuotePattern :: [Name] -> Term -> ElabD ()
reflectTTQuotePattern unq (P _ n _)
| n `elem` unq =
do fill (Var n) ; solve
| otherwise =
do tyannot <- claimTy (sMN 0 "pTyAnnot") (Var (reflm "TT"))
movelast tyannot
nt <- getNameFrom (sMN 0 "nt")
claim nt (Var (reflm "NameType"))
movelast nt
n' <- getNameFrom (sMN 0 "n")
claim n' (Var (reflm "TTName"))
fill $ reflCall "P" [Var nt, Var n', Var tyannot]
solve
focus n'; reflectNameQuotePattern n
reflectTTQuotePattern unq (V n)
= do fill $ reflCall "V" [RConstant (I n)]
solve
reflectTTQuotePattern unq (Bind n b x)
= do x' <- claimTy (sMN 0 "sc") (Var (reflm "TT"))
movelast x'
b' <- getNameFrom (sMN 0 "binder")
claim b' (RApp (Var (sNS (sUN "Binder") ["Reflection", "Language"]))
(Var (sNS (sUN "TT") ["Reflection", "Language"])))
if n `elem` freeNames x
then do fill $ reflCall "Bind"
[reflectName n,
Var b',
Var x']
solve
else do any <- getNameFrom (sMN 0 "anyName")
claim any (Var (reflm "TTName"))
movelast any
fill $ reflCall "Bind"
[Var any,
Var b',
Var x']
solve
focus x'; reflectTTQuotePattern unq x
focus b'; reflectBinderQuotePattern reflectTTQuotePattern (Var $ reflm "TT") unq b
reflectTTQuotePattern unq (App _ f x)
= do f' <- claimTy (sMN 0 "f") (Var (reflm "TT")) ; movelast f'
x' <- claimTy (sMN 0 "x") (Var (reflm "TT")) ; movelast x'
fill $ reflCall "App" [Var f', Var x']
solve
focus f'; reflectTTQuotePattern unq f
focus x'; reflectTTQuotePattern unq x
reflectTTQuotePattern unq (Constant c)
= do fill $ reflCall "TConst" [reflectConstant c]
solve
reflectTTQuotePattern unq (Proj t i)
= lift . tfail . InternalMsg $
"Phase error! The Proj constructor is for optimization only and should not have been reflected during elaboration."
reflectTTQuotePattern unq Erased
= do erased <- claimTy (sMN 0 "erased") (Var (reflm "TT"))
movelast erased
fill (Var erased)
reflectTTQuotePattern unq Impossible
= lift . tfail . InternalMsg $
"Phase error! The Impossible constructor is for optimization only and should not have been reflected during elaboration."
reflectTTQuotePattern unq (Inferred t)
= lift . tfail . InternalMsg $
"Phase error! The Inferred constructor is for coverage checking only and should not have been reflected during elaboration."
reflectTTQuotePattern unq (TType exp)
= do ue <- getNameFrom (sMN 0 "uexp")
claim ue (Var (sNS (sUN "TTUExp") ["Reflection", "Language"]))
movelast ue
fill $ reflCall "TType" [Var ue]
solve
reflectTTQuotePattern unq (UType u)
= do uH <- getNameFrom (sMN 0 "someUniv")
claim uH (Var (reflm "Universe"))
movelast uH
fill $ reflCall "UType" [Var uH]
solve
focus uH
fill (Var (reflm (case u of
NullType -> "NullType"
UniqueType -> "UniqueType"
AllTypes -> "AllTypes")))
solve
reflectRawQuotePattern :: [Name] -> Raw -> ElabD ()
reflectRawQuotePattern unq (Var n)
| n `elem` unq = do fill (Var n); solve
| otherwise = do fill (reflCall "Var" [reflectName n]); solve
reflectRawQuotePattern unq (RBind n b sc) =
do scH <- getNameFrom (sMN 0 "sc")
claim scH (Var (reflm "Raw"))
movelast scH
bH <- getNameFrom (sMN 0 "binder")
claim bH (RApp (Var (reflm "Binder"))
(Var (reflm "Raw")))
if n `elem` freeNamesR sc
then do fill $ reflCall "RBind" [reflectName n,
Var bH,
Var scH]
solve
else do any <- getNameFrom (sMN 0 "anyName")
claim any (Var (reflm "TTName"))
movelast any
fill $ reflCall "RBind" [Var any, Var bH, Var scH]
solve
focus scH; reflectRawQuotePattern unq sc
focus bH; reflectBinderQuotePattern reflectRawQuotePattern (Var $ reflm "Raw") unq b
where freeNamesR (Var n) = [n]
freeNamesR (RBind n (Let rc t v) body) = concat [freeNamesR v,
freeNamesR body \\ [n],
freeNamesR t]
freeNamesR (RBind n b body) = freeNamesR (binderTy b) ++
(freeNamesR body \\ [n])
freeNamesR (RApp f x) = freeNamesR f ++ freeNamesR x
freeNamesR RType = []
freeNamesR (RUType _) = []
freeNamesR (RConstant _) = []
reflectRawQuotePattern unq (RApp f x) =
do fH <- getNameFrom (sMN 0 "f")
claim fH (Var (reflm "Raw"))
movelast fH
xH <- getNameFrom (sMN 0 "x")
claim xH (Var (reflm "Raw"))
movelast xH
fill $ reflCall "RApp" [Var fH, Var xH]
solve
focus fH; reflectRawQuotePattern unq f
focus xH; reflectRawQuotePattern unq x
reflectRawQuotePattern unq RType =
do fill (Var (reflm "RType"))
solve
reflectRawQuotePattern unq (RUType univ) =
do uH <- getNameFrom (sMN 0 "universe")
claim uH (Var (reflm "Universe"))
movelast uH
fill $ reflCall "RUType" [Var uH]
solve
focus uH; fill (reflectUniverse univ); solve
reflectRawQuotePattern unq (RConstant c) =
do cH <- getNameFrom (sMN 0 "const")
claim cH (Var (reflm "Constant"))
movelast cH
fill (reflCall "RConstant" [Var cH]); solve
focus cH
fill (reflectConstant c); solve
reflectBinderQuotePattern :: ([Name] -> a -> ElabD ()) -> Raw -> [Name] -> Binder a -> ElabD ()
reflectBinderQuotePattern q ty unq (Lam _ t)
= do t' <- claimTy (sMN 0 "ty") ty; movelast t'
fill $ reflCall "Lam" [ty, Var t']
solve
focus t'; q unq t
reflectBinderQuotePattern q ty unq (Pi _ _ t k)
= do t' <- claimTy (sMN 0 "ty") ty; movelast t'
k' <- claimTy (sMN 0 "k") ty; movelast k';
fill $ reflCall "Pi" [ty, Var t', Var k']
solve
focus t'; q unq t
reflectBinderQuotePattern q ty unq (Let rc x y)
= do x' <- claimTy (sMN 0 "ty") ty; movelast x';
y' <- claimTy (sMN 0 "v")ty; movelast y';
fill $ reflCall "Let" [ty, Var x', Var y']
solve
focus x'; q unq x
focus y'; q unq y
reflectBinderQuotePattern q ty unq (NLet x y)
= do x' <- claimTy (sMN 0 "ty") ty; movelast x'
y' <- claimTy (sMN 0 "v") ty; movelast y'
fill $ reflCall "Let" [ty, Var x', Var y']
solve
focus x'; q unq x
focus y'; q unq y
reflectBinderQuotePattern q ty unq (Hole t)
= do t' <- claimTy (sMN 0 "ty") ty; movelast t'
fill $ reflCall "Hole" [ty, Var t']
solve
focus t'; q unq t
reflectBinderQuotePattern q ty unq (GHole _ _ t)
= do t' <- claimTy (sMN 0 "ty") ty; movelast t'
fill $ reflCall "GHole" [ty, Var t']
solve
focus t'; q unq t
reflectBinderQuotePattern q ty unq (Guess x y)
= do x' <- claimTy (sMN 0 "ty") ty; movelast x'
y' <- claimTy (sMN 0 "v") ty; movelast y'
fill $ reflCall "Guess" [ty, Var x', Var y']
solve
focus x'; q unq x
focus y'; q unq y
reflectBinderQuotePattern q ty unq (PVar _ t)
= do t' <- claimTy (sMN 0 "ty") ty; movelast t'
fill $ reflCall "PVar" [ty, Var t']
solve
focus t'; q unq t
reflectBinderQuotePattern q ty unq (PVTy t)
= do t' <- claimTy (sMN 0 "ty") ty; movelast t'
fill $ reflCall "PVTy" [ty, Var t']
solve
focus t'; q unq t
reflectUniverse :: Universe -> Raw
reflectUniverse u =
(Var (reflm (case u of
NullType -> "NullType"
UniqueType -> "UniqueType"
AllTypes -> "AllTypes")))
reflectTTQuote :: [Name] -> Term -> Raw
reflectTTQuote unq (P nt n t)
| n `elem` unq = Var n
| otherwise = reflCall "P" [reflectNameType nt, reflectName n, reflectTTQuote unq t]
reflectTTQuote unq (V n)
= reflCall "V" [RConstant (I n)]
reflectTTQuote unq (Bind n b x)
= reflCall "Bind" [reflectName n, reflectBinderQuote reflectTTQuote (reflm "TT") unq b, reflectTTQuote unq x]
reflectTTQuote unq (App _ f x)
= reflCall "App" [reflectTTQuote unq f, reflectTTQuote unq x]
reflectTTQuote unq (Constant c)
= reflCall "TConst" [reflectConstant c]
reflectTTQuote unq (TType exp) = reflCall "TType" [reflectUExp exp]
reflectTTQuote unq (UType u) = reflCall "UType" [reflectUniverse u]
reflectTTQuote _ (Proj _ _) =
error "Phase error! The Proj constructor is for optimization only and should not have been reflected during elaboration."
reflectTTQuote unq Erased = Var (reflm "Erased")
reflectTTQuote _ Impossible =
error "Phase error! The Impossible constructor is for optimization only and should not have been reflected during elaboration."
reflectTTQuote _ (Inferred tm) =
error "Phase error! The Inferred constructor is for coverage checking only and should not have been reflected during elaboration."
reflectRawQuote :: [Name] -> Raw -> Raw
reflectRawQuote unq (Var n)
| n `elem` unq = Var n
| otherwise = reflCall "Var" [reflectName n]
reflectRawQuote unq (RBind n b r) =
reflCall "RBind" [reflectName n, reflectBinderQuote reflectRawQuote (reflm "Raw") unq b, reflectRawQuote unq r]
reflectRawQuote unq (RApp f x) =
reflCall "RApp" [reflectRawQuote unq f, reflectRawQuote unq x]
reflectRawQuote unq RType = Var (reflm "RType")
reflectRawQuote unq (RUType u) =
reflCall "RUType" [reflectUniverse u]
reflectRawQuote unq (RConstant cst) = reflCall "RConstant" [reflectConstant cst]
reflectNameType :: NameType -> Raw
reflectNameType (Bound) = Var (reflm "Bound")
reflectNameType (Ref) = Var (reflm "Ref")
reflectNameType (DCon x y _)
= reflCall "DCon" [RConstant (I x), RConstant (I y)]
reflectNameType (TCon x y)
= reflCall "TCon" [RConstant (I x), RConstant (I y)]
reflectName :: Name -> Raw
reflectName (UN s)
= reflCall "UN" [RConstant (Str (str s))]
reflectName (NS n ns)
= reflCall "NS" [ reflectName n
, foldr (\ n s ->
raw_apply ( Var $ sNS (sUN "::") ["List", "Prelude"] )
[ RConstant StrType, RConstant (Str n), s ])
( raw_apply ( Var $ sNS (sUN "Nil") ["List", "Prelude"] )
[ RConstant StrType ])
(map str ns)
]
reflectName (MN i n)
= reflCall "MN" [RConstant (I i), RConstant (Str (str n))]
reflectName (SN sn) = raw_apply (Var (reflm "SN")) [reflectSpecialName sn]
reflectName (SymRef _) = error "The impossible happened: symbol table ref survived IBC loading"
reflectSpecialName :: SpecialName -> Raw
reflectSpecialName (WhereN i n1 n2) =
reflCall "WhereN" [RConstant (I i), reflectName n1, reflectName n2]
reflectSpecialName (WithN i n) = reflCall "WithN" [ RConstant (I i)
, reflectName n
]
reflectSpecialName (ImplementationN impl ss) =
reflCall "ImplementationN" [ reflectName impl
, mkList (RConstant StrType) $
map (RConstant . Str . T.unpack) ss
]
reflectSpecialName (ParentN n s) =
reflCall "ParentN" [reflectName n, RConstant (Str (T.unpack s))]
reflectSpecialName (MethodN n) =
reflCall "MethodN" [reflectName n]
reflectSpecialName (CaseN fc n) =
reflCall "CaseN" [reflectFC (unwrapFC fc), reflectName n]
reflectSpecialName (ImplementationCtorN n) =
reflCall "ImplementationCtorN" [reflectName n]
reflectSpecialName (MetaN parent meta) =
reflCall "MetaN" [reflectName parent, reflectName meta]
reflectNameQuotePattern :: Name -> ElabD ()
reflectNameQuotePattern n@(UN s)
= do fill $ reflectName n
solve
reflectNameQuotePattern n@(NS _ _)
= do fill $ reflectName n
solve
reflectNameQuotePattern (MN _ n)
= do i <- getNameFrom (sMN 0 "mnCounter")
claim i (RConstant (AType (ATInt ITNative)))
movelast i
fill $ reflCall "MN" [Var i, RConstant (Str $ T.unpack n)]
solve
reflectNameQuotePattern _
= do nameHole <- getNameFrom (sMN 0 "name")
claim nameHole (Var (reflm "TTName"))
movelast nameHole
fill (Var nameHole)
solve
reflectBinder :: Binder Term -> Raw
reflectBinder = reflectBinderQuote reflectTTQuote (reflm "TT") []
reflectBinderQuote :: ([Name] -> a -> Raw) -> Name -> [Name] -> Binder a -> Raw
reflectBinderQuote q ty unq (Lam _ t)
= reflCall "Lam" [Var ty, q unq t]
reflectBinderQuote q ty unq (Pi _ _ t k)
= reflCall "Pi" [Var ty, q unq t, q unq k]
reflectBinderQuote q ty unq (Let rc x y)
= reflCall "Let" [Var ty, q unq x, q unq y]
reflectBinderQuote q ty unq (NLet x y)
= reflCall "Let" [Var ty, q unq x, q unq y]
reflectBinderQuote q ty unq (Hole t)
= reflCall "Hole" [Var ty, q unq t]
reflectBinderQuote q ty unq (GHole _ _ t)
= reflCall "GHole" [Var ty, q unq t]
reflectBinderQuote q ty unq (Guess x y)
= reflCall "Guess" [Var ty, q unq x, q unq y]
reflectBinderQuote q ty unq (PVar _ t)
= reflCall "PVar" [Var ty, q unq t]
reflectBinderQuote q ty unq (PVTy t)
= reflCall "PVTy" [Var ty, q unq t]
mkList :: Raw -> [Raw] -> Raw
mkList ty [] = RApp (Var (sNS (sUN "Nil") ["List", "Prelude"])) ty
mkList ty (x:xs) = RApp (RApp (RApp (Var (sNS (sUN "::") ["List", "Prelude"])) ty)
x)
(mkList ty xs)
reflectConstant :: Const -> Raw
reflectConstant c@(I _) = reflCall "I" [RConstant c]
reflectConstant c@(BI _) = reflCall "BI" [RConstant c]
reflectConstant c@(Fl _) = reflCall "Fl" [RConstant c]
reflectConstant c@(Ch _) = reflCall "Ch" [RConstant c]
reflectConstant c@(Str _) = reflCall "Str" [RConstant c]
reflectConstant c@(B8 _) = reflCall "B8" [RConstant c]
reflectConstant c@(B16 _) = reflCall "B16" [RConstant c]
reflectConstant c@(B32 _) = reflCall "B32" [RConstant c]
reflectConstant c@(B64 _) = reflCall "B64" [RConstant c]
reflectConstant (AType (ATInt ITNative)) = reflCall "AType" [reflCall "ATInt" [Var (reflm "ITNative")]]
reflectConstant (AType (ATInt ITBig)) = reflCall "AType" [reflCall "ATInt" [Var (reflm "ITBig")]]
reflectConstant (AType ATFloat) = reflCall "AType" [Var (reflm "ATDouble")]
reflectConstant (AType (ATInt ITChar)) = reflCall "AType" [reflCall "ATInt" [Var (reflm "ITChar")]]
reflectConstant StrType = Var (reflm "StrType")
reflectConstant (AType (ATInt (ITFixed IT8))) = reflCall "AType" [reflCall "ATInt" [reflCall "ITFixed" [Var (reflm "IT8")]]]
reflectConstant (AType (ATInt (ITFixed IT16))) = reflCall "AType" [reflCall "ATInt" [reflCall "ITFixed" [Var (reflm "IT16")]]]
reflectConstant (AType (ATInt (ITFixed IT32))) = reflCall "AType" [reflCall "ATInt" [reflCall "ITFixed" [Var (reflm "IT32")]]]
reflectConstant (AType (ATInt (ITFixed IT64))) = reflCall "AType" [reflCall "ATInt" [reflCall "ITFixed" [Var (reflm "IT64")]]]
reflectConstant VoidType = Var (reflm "VoidType")
reflectConstant Forgot = Var (reflm "Forgot")
reflectConstant WorldType = Var (reflm "WorldType")
reflectConstant TheWorld = Var (reflm "TheWorld")
reflectUExp :: UExp -> Raw
reflectUExp (UVar ns i) = reflCall "UVar" [RConstant (Str ns), RConstant (I i)]
reflectUExp (UVal i) = reflCall "UVal" [RConstant (I i)]
reflectEnv :: Env -> Raw
reflectEnv = foldr consToEnvList emptyEnvList . envBinders
where
consToEnvList :: (Name, Binder Term) -> Raw -> Raw
consToEnvList (n, b) l
= raw_apply (Var (sNS (sUN "::") ["List", "Prelude"]))
[ envTupleType
, raw_apply (Var pairCon) [ (Var $ reflm "TTName")
, (RApp (Var $ reflm "Binder")
(Var $ reflm "TT"))
, reflectName n
, reflectBinder b
]
, l
]
emptyEnvList :: Raw
emptyEnvList = raw_apply (Var (sNS (sUN "Nil") ["List", "Prelude"]))
[envTupleType]
reifyEnv :: Term -> ElabD Env
reifyEnv tm = do preEnv <- reifyList (reifyPair reifyTTName (reifyTTBinder reifyTT (reflm "TT"))) tm
return $ map (\(n, b) -> (n, RigW, b)) preEnv
rawBool :: Bool -> Raw
rawBool True = Var (sNS (sUN "True") ["Bool", "Prelude"])
rawBool False = Var (sNS (sUN "False") ["Bool", "Prelude"])
rawNil :: Raw -> Raw
rawNil ty = raw_apply (Var (sNS (sUN "Nil") ["List", "Prelude"])) [ty]
rawCons :: Raw -> Raw -> Raw -> Raw
rawCons ty hd tl = raw_apply (Var (sNS (sUN "::") ["List", "Prelude"])) [ty, hd, tl]
rawList :: Raw -> [Raw] -> Raw
rawList ty = foldr (rawCons ty) (rawNil ty)
rawPairTy :: Raw -> Raw -> Raw
rawPairTy t1 t2 = raw_apply (Var pairTy) [t1, t2]
rawPair :: (Raw, Raw) -> (Raw, Raw) -> Raw
rawPair (a, b) (x, y) = raw_apply (Var pairCon) [a, b, x, y]
rawTripleTy :: Raw -> Raw -> Raw -> Raw
rawTripleTy a b c = rawPairTy a (rawPairTy b c)
rawTriple :: (Raw, Raw, Raw) -> (Raw, Raw, Raw) -> Raw
rawTriple (a, b, c) (x, y, z) = rawPair (a, rawPairTy b c) (x, rawPair (b, c) (y, z))
reflectCtxt :: [(Name, Type)] -> Raw
reflectCtxt ctxt = rawList (rawPairTy (Var $ reflm "TTName") (Var $ reflm "TT"))
(map (\ (n, t) -> (rawPair (Var $ reflm "TTName", Var $ reflm "TT")
(reflectName n, reflect t)))
ctxt)
reflectErr :: Err -> Raw
reflectErr (Msg msg) = raw_apply (Var $ reflErrName "Msg") [RConstant (Str msg)]
reflectErr (InternalMsg msg) = raw_apply (Var $ reflErrName "InternalMsg") [RConstant (Str msg)]
reflectErr (CantUnify b (t1,_) (t2,_) e ctxt i) =
raw_apply (Var $ reflErrName "CantUnify")
[ rawBool b
, reflect t1
, reflect t2
, reflectErr e
, reflectCtxt ctxt
, RConstant (I i)]
reflectErr (InfiniteUnify n tm ctxt) =
raw_apply (Var $ reflErrName "InfiniteUnify")
[ reflectName n
, reflect tm
, reflectCtxt ctxt
]
reflectErr (CantConvert t t' ctxt) =
raw_apply (Var $ reflErrName "CantConvert")
[ reflect t
, reflect t'
, reflectCtxt ctxt
]
reflectErr (CantSolveGoal t ctxt) =
raw_apply (Var $ reflErrName "CantSolveGoal")
[ reflect t
, reflectCtxt ctxt
]
reflectErr (UnifyScope n n' t ctxt) =
raw_apply (Var $ reflErrName "UnifyScope")
[ reflectName n
, reflectName n'
, reflect t
, reflectCtxt ctxt
]
reflectErr (CantInferType str) =
raw_apply (Var $ reflErrName "CantInferType") [RConstant (Str str)]
reflectErr (NonFunctionType t t') =
raw_apply (Var $ reflErrName "NonFunctionType") [reflect t, reflect t']
reflectErr (NotEquality t t') =
raw_apply (Var $ reflErrName "NotEquality") [reflect t, reflect t']
reflectErr (TooManyArguments n) = raw_apply (Var $ reflErrName "TooManyArguments") [reflectName n]
reflectErr (CantIntroduce t) = raw_apply (Var $ reflErrName "CantIntroduce") [reflect t]
reflectErr (NoSuchVariable n) = raw_apply (Var $ reflErrName "NoSuchVariable") [reflectName n]
reflectErr (WithFnType t) = raw_apply (Var $ reflErrName "WithFnType") [reflect t]
reflectErr (CantMatch t) = raw_apply (Var $ reflErrName "CantMatch") [reflect t]
reflectErr (NoTypeDecl n) = raw_apply (Var $ reflErrName "NoTypeDecl") [reflectName n]
reflectErr (NotInjective t1 t2 t3) =
raw_apply (Var $ reflErrName "NotInjective")
[ reflect t1
, reflect t2
, reflect t3
]
reflectErr (CantResolve _ t more)
= raw_apply (Var $ reflErrName "CantResolve") [reflect t, reflectErr more]
reflectErr (InvalidTCArg n t) = raw_apply (Var $ reflErrName "InvalidTCArg") [reflectName n, reflect t]
reflectErr (CantResolveAlts ss) =
raw_apply (Var $ reflErrName "CantResolveAlts")
[rawList (Var $ reflm "TTName") (map reflectName ss)]
reflectErr (IncompleteTerm t) = raw_apply (Var $ reflErrName "IncompleteTerm") [reflect t]
reflectErr (UniverseError fc ue old new tys) =
Var $ reflErrName "UniverseError"
reflectErr ProgramLineComment = Var $ reflErrName "ProgramLineComment"
reflectErr (Inaccessible n) = raw_apply (Var $ reflErrName "Inaccessible") [reflectName n]
reflectErr (UnknownImplicit n f) = raw_apply (Var $ reflErrName "UnknownImplicit") [reflectName n, reflectName f]
reflectErr (NonCollapsiblePostulate n) = raw_apply (Var $ reflErrName "NonCollabsiblePostulate") [reflectName n]
reflectErr (AlreadyDefined n) = raw_apply (Var $ reflErrName "AlreadyDefined") [reflectName n]
reflectErr (ProofSearchFail e) = raw_apply (Var $ reflErrName "ProofSearchFail") [reflectErr e]
reflectErr (NoRewriting l r tm) = raw_apply (Var $ reflErrName "NoRewriting") [reflect l, reflect r, reflect tm]
reflectErr (ProviderError str) =
raw_apply (Var $ reflErrName "ProviderError") [RConstant (Str str)]
reflectErr (LoadingFailed str err) =
raw_apply (Var $ reflErrName "LoadingFailed") [RConstant (Str str)]
reflectErr x = raw_apply (Var (sNS (sUN "Msg") ["Errors", "Reflection", "Language"])) [RConstant . Str $ "Default reflection: " ++ show x]
reflectFC :: FC -> Raw
reflectFC fc = raw_apply (Var (reflm "FileLoc"))
[ RConstant (Str (fc_fname fc))
, raw_apply (Var pairCon) $
[intTy, intTy] ++
map (RConstant . I)
[ fst (fc_start fc)
, snd (fc_start fc)
]
, raw_apply (Var pairCon) $
[intTy, intTy] ++
map (RConstant . I)
[ fst (fc_end fc)
, snd (fc_end fc)
]
]
where intTy = RConstant (AType (ATInt ITNative))
reifyFC :: Term -> ElabD FC
reifyFC tm
| (P (DCon _ _ _) cn _, [Constant (Str fn), st, end]) <- unApply tm
, cn == reflm "FileLoc" = FC fn <$> reifyPair reifyInt reifyInt st <*> reifyPair reifyInt reifyInt end
| otherwise = fail $ "Not a source location: " ++ show tm
fromTTMaybe :: Term -> Maybe Term
fromTTMaybe (App _ (App _ (P (DCon _ _ _) (NS (UN just) _) _) ty) tm)
| just == txt "Just" = Just tm
fromTTMaybe x = Nothing
reflErrName :: String -> Name
reflErrName n = sNS (sUN n) ["Errors", "Reflection", "Language"]
reifyReportPart :: Term -> Either Err ErrorReportPart
reifyReportPart (App _ (P (DCon _ _ _) n _) (Constant (Str msg))) | n == reflm "TextPart" =
Right (TextPart msg)
reifyReportPart (App _ (P (DCon _ _ _) n _) ttn)
| n == reflm "NamePart" =
case runElab initEState (reifyTTName ttn) (initElaborator (sMN 0 "hole") internalNS initContext emptyContext 0 Erased) of
Error e -> Left . InternalMsg $
"could not reify name term " ++
show ttn ++
" when reflecting an error:" ++ show e
OK (n', _)-> Right $ NamePart n'
reifyReportPart (App _ (P (DCon _ _ _) n _) tm)
| n == reflm "TermPart" =
case runElab initEState (reifyTT tm) (initElaborator (sMN 0 "hole") internalNS initContext emptyContext 0 Erased) of
Error e -> Left . InternalMsg $
"could not reify reflected term " ++
show tm ++
" when reflecting an error:" ++ show e
OK (tm', _) -> Right $ TermPart tm'
reifyReportPart (App _ (P (DCon _ _ _) n _) tm)
| n == reflm "RawPart" =
case runElab initEState (reifyRaw tm) (initElaborator (sMN 0 "hole") internalNS initContext emptyContext 0 Erased) of
Error e -> Left . InternalMsg $
"could not reify reflected raw term " ++
show tm ++
" when reflecting an error: " ++ show e
OK (tm', _) -> Right $ RawPart tm'
reifyReportPart (App _ (P (DCon _ _ _) n _) tm)
| n == reflm "SubReport" =
case unList tm of
Just xs -> do subParts <- mapM reifyReportPart xs
Right (SubReport subParts)
Nothing -> Left . InternalMsg $ "could not reify subreport " ++ show tm
reifyReportPart x = Left . InternalMsg $ "could not reify " ++ show x
reifyErasure :: Term -> ElabD RErasure
reifyErasure (P (DCon _ _ _) n _)
| n == tacN "Erased" = return RErased
| n == tacN "NotErased" = return RNotErased
reifyErasure tm = fail $ "Can't reify " ++ show tm ++ " as erasure info."
reifyPlicity :: Term -> ElabD RPlicity
reifyPlicity (P (DCon _ _ _) n _)
| n == tacN "Explicit" = return RExplicit
| n == tacN "Implicit" = return RImplicit
| n == tacN "Constraint" = return RConstraint
reifyPlicity tm = fail $ "Couldn't reify " ++ show tm ++ " as RPlicity."
reifyRFunArg :: Term -> ElabD RFunArg
reifyRFunArg (App _ (App _ (App _ (App _ (P (DCon _ _ _) n _) argN) argTy) argPl) argE)
| n == tacN "MkFunArg" = liftM4 RFunArg
(reifyTTName argN)
(reifyRaw argTy)
(reifyPlicity argPl)
(reifyErasure argE)
reifyRFunArg aTm = fail $ "Couldn't reify " ++ show aTm ++ " as an RArg."
reifyTyDecl :: Term -> ElabD RTyDecl
reifyTyDecl (App _ (App _ (App _ (P (DCon _ _ _) n _) tyN) args) ret)
| n == tacN "Declare" =
do tyN' <- reifyTTName tyN
args' <- case unList args of
Nothing -> fail $ "Couldn't reify " ++ show args ++ " as an arglist."
Just xs -> mapM reifyRFunArg xs
ret' <- reifyRaw ret
return $ RDeclare tyN' args' ret'
reifyTyDecl tm = fail $ "Couldn't reify " ++ show tm ++ " as a type declaration."
reifyFunDefn :: Term -> ElabD (RFunDefn Raw)
reifyFunDefn (App _ (App _ (App _ (P _ n _) (P _ t _)) fnN) clauses)
| n == tacN "DefineFun" && t == reflm "Raw" =
do fnN' <- reifyTTName fnN
clauses' <- case unList clauses of
Nothing -> fail $ "Couldn't reify " ++ show clauses ++ " as a clause list"
Just cs -> mapM reifyC cs
return $ RDefineFun fnN' clauses'
where reifyC :: Term -> ElabD (RFunClause Raw)
reifyC (App _ (App _ (App _ (P (DCon _ _ _) n _) (P _ t _)) lhs) rhs)
| n == tacN "MkFunClause" && t == reflm "Raw" = liftM2 RMkFunClause
(reifyRaw lhs)
(reifyRaw rhs)
reifyC (App _ (App _ (P (DCon _ _ _) n _) (P _ t _)) lhs)
| n == tacN "MkImpossibleClause" && t == reflm "Raw" = fmap RMkImpossibleClause $ reifyRaw lhs
reifyC tm = fail $ "Couldn't reify " ++ show tm ++ " as a clause."
reifyFunDefn tm = fail $ "Couldn't reify " ++ show tm ++ " as a function declaration."
reifyRConstructorDefn :: Term -> ElabD RConstructorDefn
reifyRConstructorDefn (App _ (App _ (App _ (P _ n _) cn) args) retTy)
| n == tacN "Constructor", Just args' <- unList args
= RConstructor <$> reifyTTName cn <*> mapM reifyRFunArg args' <*> reifyRaw retTy
reifyRConstructorDefn aTm = fail $ "Couldn't reify " ++ show aTm ++ " as an RConstructorDefn"
reifyRDataDefn :: Term -> ElabD RDataDefn
reifyRDataDefn (App _ (App _ (P _ n _) tyn) ctors)
| n == tacN "DefineDatatype", Just ctors' <- unList ctors
= RDefineDatatype <$> reifyTTName tyn <*> mapM reifyRConstructorDefn ctors'
reifyRDataDefn aTm = fail $ "Couldn't reify " ++ show aTm ++ " as an RDataDefn"
envTupleType :: Raw
envTupleType
= raw_apply (Var pairTy) [ (Var $ reflm "TTName")
, (RApp (Var $ reflm "Binder") (Var $ reflm "TT"))
]
reflectList :: Raw -> [Raw] -> Raw
reflectList ty [] = RApp (Var (sNS (sUN "Nil") ["List", "Prelude"])) ty
reflectList ty (x:xs) = RApp (RApp (RApp (Var (sNS (sUN "::") ["List", "Prelude"])) ty)
x)
(reflectList ty xs)
getArgs :: [PArg] -> Raw -> ([RFunArg], Raw)
getArgs [] r = ([], r)
getArgs (a:as) (RBind n (Pi _ _ ty _) sc) =
let (args, res) = getArgs as sc
erased = if InaccessibleArg `elem` argopts a then RErased else RNotErased
arg' = case a of
PImp {} -> RFunArg n ty RImplicit erased
PExp {} -> RFunArg n ty RExplicit erased
PConstraint {} -> RFunArg n ty RConstraint erased
PTacImplicit {} -> RFunArg n ty RImplicit erased
in (arg':args, res)
getArgs _ r = ([], r)
unApplyRaw :: Raw -> (Raw, [Raw])
unApplyRaw tm = ua [] tm
where
ua args (RApp f a) = ua (a:args) f
ua args t = (t, args)
buildFunDefns :: IState -> Name -> [RFunDefn Term]
buildFunDefns ist n =
[ mkFunDefn name clauses
| (name, (clauses, _)) <- lookupCtxtName n $ idris_patdefs ist
]
where mkFunDefn name clauses = RDefineFun name (map mkFunClause clauses)
mkFunClause ([], lhs, Impossible) = RMkImpossibleClause lhs
mkFunClause ([], lhs, rhs) = RMkFunClause lhs rhs
mkFunClause (((n, ty) : ns), lhs, rhs) = mkFunClause (ns, bind lhs, bind rhs) where
bind Impossible = Impossible
bind tm = Bind n (PVar RigW ty) tm
buildDatatypes :: IState -> Name -> [RDatatype]
buildDatatypes ist n =
catMaybes [ mkDataType dn ti
| (dn, ti) <- lookupCtxtName n datatypes
]
where datatypes = idris_datatypes ist
ctxt = tt_ctxt ist
impls = idris_implicits ist
ctorSig params cn = do cty <- fmap forget (lookupTyExact cn ctxt)
argInfo <- lookupCtxtExact cn impls
let (args, res) = getArgs argInfo cty
return (cn, ctorArgsStatus args res params, res)
argPos n [] res = findPos n res
where findPos n app = case unApplyRaw app of
(_, argL) -> findIndex (== Var n) argL
argPos n (arg:args) res = if n == argName arg
then Nothing
else argPos n args res
ctorArgsStatus :: [RFunArg] -> Raw -> [Int] -> [RCtorArg]
ctorArgsStatus [] _ _ = []
ctorArgsStatus (arg:args) res params =
case argPos (argName arg) args res of
Nothing -> RCtorField arg : ctorArgsStatus args res params
Just i -> if i `elem` params
then RCtorParameter arg : ctorArgsStatus args res params
else RCtorField arg : ctorArgsStatus args res params
mkDataType name (TI {param_pos = params, con_names = constrs}) =
do (TyDecl (TCon _ _) ty) <- lookupDefExact name ctxt
implInfo <- lookupCtxtExact name impls
let (tcargs, tcres) = getTCArgs params implInfo (forget ty)
ctors <- mapM (ctorSig params) constrs
return $ RDatatype name tcargs tcres ctors
getTCArgs :: [Int] -> [PArg] -> Raw -> ([RTyConArg], Raw)
getTCArgs params implInfo tcTy =
let (args, res) = getArgs implInfo tcTy
in (tcArg args 0, res)
where tcArg [] _ = []
tcArg (arg:args) i | i `elem` params = RParameter arg : tcArg args (i+1)
| otherwise = RIndex arg : tcArg args (i+1)
reflectErasure :: RErasure -> Raw
reflectErasure RErased = Var (tacN "Erased")
reflectErasure RNotErased = Var (tacN "NotErased")
reflectPlicity :: RPlicity -> Raw
reflectPlicity RExplicit = Var (tacN "Explicit")
reflectPlicity RImplicit = Var (tacN "Implicit")
reflectPlicity RConstraint = Var (tacN "Constraint")
reflectArg :: RFunArg -> Raw
reflectArg (RFunArg n ty plic erasure) =
RApp (RApp (RApp (RApp (Var $ tacN "MkFunArg") (reflectName n))
(reflectRaw ty))
(reflectPlicity plic))
(reflectErasure erasure)
reflectCtorArg :: RCtorArg -> Raw
reflectCtorArg (RCtorParameter arg) = RApp (Var $ tacN "CtorParameter") (reflectArg arg)
reflectCtorArg (RCtorField arg) = RApp (Var $ tacN "CtorField") (reflectArg arg)
reflectDatatype :: RDatatype -> Raw
reflectDatatype (RDatatype tyn tyConArgs tyConRes constrs) =
raw_apply (Var $ tacN "MkDatatype") [ reflectName tyn
, rawList (Var $ tacN "TyConArg") (map reflectConArg tyConArgs)
, reflectRaw tyConRes
, rawList (rawTripleTy (Var $ reflm "TTName")
(RApp (Var (sNS (sUN "List") ["List", "Prelude"]))
(Var $ tacN "CtorArg"))
(Var $ reflm "Raw"))
[ rawTriple ((Var $ reflm "TTName")
,(RApp (Var (sNS (sUN "List") ["List", "Prelude"]))
(Var $ tacN "CtorArg"))
,(Var $ reflm "Raw"))
(reflectName cn
,rawList (Var $ tacN "CtorArg")
(map reflectCtorArg cargs)
,reflectRaw cty)
| (cn, cargs, cty) <- constrs
]
]
where reflectConArg (RParameter a) =
RApp (Var $ tacN "TyConParameter") (reflectArg a)
reflectConArg (RIndex a) =
RApp (Var $ tacN "TyConIndex") (reflectArg a)
reflectFunClause :: RFunClause Term -> Raw
reflectFunClause (RMkFunClause lhs rhs) = raw_apply (Var $ tacN "MkFunClause")
$ (Var $ reflm "TT") : map reflect [ lhs, rhs ]
reflectFunClause (RMkImpossibleClause lhs) = raw_apply (Var $ tacN "MkImpossibleClause")
[ Var $ reflm "TT", reflect lhs ]
reflectFunDefn :: RFunDefn Term -> Raw
reflectFunDefn (RDefineFun name clauses) = raw_apply (Var $ tacN "DefineFun")
[ Var $ reflm "TT"
, reflectName name
, rawList (RApp (Var $ tacN "FunClause")
(Var $ reflm "TT"))
(map reflectFunClause clauses)
]