module Idris.DataOpts(applyOpts) where
import Idris.AbsSyntax
import Idris.Core.TT
class Optimisable term where
applyOpts :: term -> Idris term
instance (Optimisable a, Optimisable b) => Optimisable (a, b) where
applyOpts (x, y) = (,) <$> applyOpts x <*> applyOpts y
instance (Optimisable a, Optimisable b) => Optimisable (vs, a, b) where
applyOpts (v, x, y) = (,,) v <$> applyOpts x <*> applyOpts y
instance Optimisable a => Optimisable [a] where
applyOpts = mapM applyOpts
instance Optimisable a => Optimisable (Either a (a, a)) where
applyOpts (Left t) = Left <$> applyOpts t
applyOpts (Right t) = Right <$> applyOpts t
instance Optimisable Raw where
applyOpts t@(RApp f a)
| (Var n, args) <- raw_unapply t
= raw_apply (Var n) <$> mapM applyOpts args
| otherwise = RApp <$> applyOpts f <*> applyOpts a
applyOpts (RBind n b t) = RBind n <$> applyOpts b <*> applyOpts t
applyOpts t = return t
instance Optimisable (Binder (TT Name)) where
applyOpts (Let r t v) = Let r <$> return Erased <*> applyOpts v
applyOpts b = return (b { binderTy = Erased })
instance Optimisable (Binder Raw) where
applyOpts b = do t' <- applyOpts (binderTy b)
return (b { binderTy = t' })
prel = [txt "Nat", txt "Prelude"]
instance Optimisable (TT Name) where
applyOpts (P _ (NS (UN fn) mod) _)
| fn == txt "plus" && mod == prel
= return (P Ref (sUN "prim__addBigInt") Erased)
applyOpts (P _ (NS (UN fn) mod) _)
| fn == txt "mult" && mod == prel
= return (P Ref (sUN "prim__mulBigInt") Erased)
applyOpts (P _ (NS (UN fn) mod) _)
| fn == txt "divNat" && mod == prel
= return (P Ref (sUN "prim__sdivBigInt") Erased)
applyOpts (P _ (NS (UN fn) mod) _)
| fn == txt "modNat" && mod == prel
= return (P Ref (sUN "prim__sremBigInt") Erased)
applyOpts (App _ (P _ (NS (UN fn) mod) _) x)
| fn == txt "fromIntegerNat" && mod == prel
= applyOpts x
applyOpts (P _ (NS (UN fn) mod) _)
| fn == txt "fromIntegerNat" && mod == prel
= return (App Complete (P Ref (sNS (sUN "id") ["Basics","Prelude"]) Erased) Erased)
applyOpts (P _ (NS (UN fn) mod) _)
| fn == txt "toIntegerNat" && mod == prel
= return (App Complete (P Ref (sNS (sUN "id") ["Basics","Prelude"]) Erased) Erased)
applyOpts c@(P (DCon t arity uniq) n _)
= return $ applyDataOptRT n t arity uniq []
applyOpts t@(App s f a)
| (c@(P (DCon t arity uniq) n _), args) <- unApply t
= applyDataOptRT n t arity uniq <$> mapM applyOpts args
| otherwise = App s <$> applyOpts f <*> applyOpts a
applyOpts (Bind n b t) = Bind n <$> applyOpts b <*> applyOpts t
applyOpts (Proj t i) = Proj <$> applyOpts t <*> pure i
applyOpts t = return t
applyDataOptRT :: Name -> Int -> Int -> Bool -> [Term] -> Term
applyDataOptRT n tag arity uniq args
| length args == arity = doOpts n args
| otherwise = let extra = satArgs (arity length args)
tm = doOpts n (map (weakenTm (length extra)) args ++ map (\n -> P Bound n Erased) extra)
in bind extra tm
where
satArgs n = map (\i -> sMN i "sat") [1..n]
bind [] tm = tm
bind (n:ns) tm = Bind n (Lam RigW Erased) (pToV n (bind ns tm))
doOpts (NS (UN z) [nat, prelude]) []
| z == txt "Z" && nat == txt "Nat" && prelude == txt "Prelude"
= Constant (BI 0)
doOpts (NS (UN s) [nat, prelude]) [k]
| s == txt "S" && nat == txt "Nat" && prelude == txt "Prelude"
= App Complete (App Complete (P Ref (sUN "prim__addBigInt") Erased) k) (Constant (BI 1))
doOpts n args = mkApp (P (DCon tag arity uniq) n Erased) args