module Idris.ProofSearch(
trivial
, trivialHoles
, proofSearch
, resolveTC
) where
import Idris.AbsSyntax
import Idris.Core.Elaborate hiding (Tactic(..))
import Idris.Core.Evaluate
import Idris.Core.TT
import Idris.Core.Unify
import Idris.Delaborate
import Control.Applicative ((<$>))
import Control.Monad
import Control.Monad.State.Strict
import Data.List
import qualified Data.Set as S
trivial :: (PTerm -> ElabD ()) -> IState -> ElabD ()
trivial = trivialHoles [] []
trivialHoles :: [Name] ->
[(Name, Int)] -> (PTerm -> ElabD ()) -> IState -> ElabD ()
trivialHoles psnames ok elab ist
= try' (do elab (PApp (fileFC "prf") (PRef (fileFC "prf") [] eqCon) [pimp (sUN "A") Placeholder False, pimp (sUN "x") Placeholder False])
return ())
(do env <- get_env
g <- goal
tryAll env
return ()) True
where
tryAll [] = fail "No trivial solution"
tryAll ((x, _, b):xs)
= do
hs <- get_holes
g <- goal
if
(holesOK hs (binderTy b) && (null psnames || x `elem` psnames))
then try' (elab (PRef (fileFC "prf") [] x))
(tryAll xs) True
else tryAll xs
holesOK hs ap@(App _ _ _)
| (P _ n _, args) <- unApply ap
= holeArgsOK hs n 0 args
holesOK hs (App _ f a) = holesOK hs f && holesOK hs a
holesOK hs (P _ n _) = not (n `elem` hs)
holesOK hs (Bind n b sc) = holesOK hs (binderTy b) &&
holesOK hs sc
holesOK hs _ = True
holeArgsOK hs n p [] = True
holeArgsOK hs n p (a : as)
| (n, p) `elem` ok = holeArgsOK hs n (p + 1) as
| otherwise = holesOK hs a && holeArgsOK hs n (p + 1) as
trivialTCs :: [(Name, Int)] -> (PTerm -> ElabD ()) -> IState -> ElabD ()
trivialTCs ok elab ist
= try' (do elab (PApp (fileFC "prf") (PRef (fileFC "prf") [] eqCon) [pimp (sUN "A") Placeholder False, pimp (sUN "x") Placeholder False])
return ())
(do env <- get_env
g <- goal
tryAll env
return ()) True
where
tryAll [] = fail "No trivial solution"
tryAll ((x, _, b):xs)
= do
hs <- get_holes
g <- goal
env <- get_env
if
(holesOK hs (binderTy b) && tcArg env (binderTy b))
then try' (elab (PRef (fileFC "prf") [] x))
(tryAll xs) True
else tryAll xs
tcArg env ty
| (P _ n _, args) <- unApply (getRetTy (normalise (tt_ctxt ist) env ty))
= case lookupCtxtExact n (idris_interfaces ist) of
Just _ -> True
_ -> False
| otherwise = False
holesOK hs ap@(App _ _ _)
| (P _ n _, args) <- unApply ap
= holeArgsOK hs n 0 args
holesOK hs (App _ f a) = holesOK hs f && holesOK hs a
holesOK hs (P _ n _) = not (n `elem` hs)
holesOK hs (Bind n b sc) = holesOK hs (binderTy b) &&
holesOK hs sc
holesOK hs _ = True
holeArgsOK hs n p [] = True
holeArgsOK hs n p (a : as)
| (n, p) `elem` ok = holeArgsOK hs n (p + 1) as
| otherwise = holesOK hs a && holeArgsOK hs n (p + 1) as
cantSolveGoal :: ElabD a
cantSolveGoal = do g <- goal
env <- get_env
lift $ tfail $
CantSolveGoal g (map (\(n,_,b) -> (n, binderTy b)) env)
proofSearch :: Bool
-> Bool
-> Bool
-> Bool
-> Int
-> (PTerm -> ElabD ())
-> Maybe Name
-> Name
-> [Name]
-> [Name]
-> IState
-> ElabD ()
proofSearch False fromProver ambigok deferonfail depth elab _ nroot psnames [fn] ist
= do
let all_imps = lookupCtxtName fn (idris_implicits ist)
tryAllFns all_imps
where
tryAllFns [] | fromProver = cantSolveGoal
tryAllFns [] = do attack; defer [] [] nroot; solve
tryAllFns (f : fs) = try' (tryFn f) (tryAllFns fs) True
tryFn (f, args) = do let imps = map isImp args
ps <- get_probs
hs <- get_holes
args <- map snd <$> try' (apply (Var f) imps)
(match_apply (Var f) imps) True
ps' <- get_probs
hs' <- get_holes
ptm <- get_term
if fromProver then cantSolveGoal
else do
mapM_ (\ h -> do focus h
attack; defer [] [] nroot; solve)
(hs' \\ hs)
solve
isImp (PImp p _ _ _ _) = (True, p)
isImp arg = (True, priority arg)
proofSearch rec fromProver ambigok deferonfail maxDepth elab fn nroot psnames hints ist
= do compute
ty <- goal
hs <- get_holes
env <- get_env
tm <- get_term
argsok <- conArgsOK ty
if ambigok || argsok then
case lookupCtxt nroot (idris_tyinfodata ist) of
[TISolution ts] -> findInferredTy ts
_ -> if ambigok then psRec rec maxDepth [] S.empty
else handleError cantsolve
(psRec rec maxDepth [] S.empty)
(autoArg (sUN "auto"))
else autoArg (sUN "auto")
where
findInferredTy (t : _) = elab (delab ist (toUN t))
cantsolve (InternalMsg _) = True
cantsolve (CantSolveGoal _ _) = True
cantsolve (IncompleteTerm _) = True
cantsolve (At _ e) = cantsolve e
cantsolve (Elaborating _ _ _ e) = cantsolve e
cantsolve (ElaboratingArg _ _ _ e) = cantsolve e
cantsolve err = False
conArgsOK ty
= let (f, as) = unApply ty in
case f of
P _ n _ ->
let autohints = case lookupCtxtExact n (idris_autohints ist) of
Nothing -> []
Just hs -> hs in
case lookupCtxtExact n (idris_datatypes ist) of
Just t -> do rs <- mapM (conReady as)
(autohints ++ con_names t)
return (and rs)
Nothing ->
return True
TType _ -> return True
_ -> typeNotSearchable ty
conReady :: [Term] -> Name -> ElabD Bool
conReady as n
= case lookupTyExact n (tt_ctxt ist) of
Just ty -> do let (_, cs) = unApply (getRetTy ty)
hs <- get_holes
return $ and (map (notHole hs) (zip as cs))
Nothing -> fail "Can't happen"
notHole hs (P _ n _, c)
| (P _ cn _, _) <- unApply c,
n `elem` hs && isConName cn (tt_ctxt ist) = False
| Constant _ <- c = not (n `elem` hs)
notHole hs (fa, c)
| (P _ fn _, args@(_:_)) <- unApply fa = fn `notElem` hs
notHole _ _ = True
toUN t@(P nt (MN i n) ty)
| ('_':xs) <- str n = t
| otherwise = P nt (UN n) ty
toUN (App s f a) = App s (toUN f) (toUN a)
toUN t = t
psRec :: Bool -> Int -> [Name] -> S.Set Type -> ElabD ()
psRec _ 0 locs tys | fromProver = cantSolveGoal
psRec rec 0 locs tys = do attack; defer [] [] nroot; solve
psRec False d locs tys = tryCons d locs tys hints
psRec True d locs tys
= do compute
ty <- goal
when (S.member ty tys) $ fail "Been here before"
let tys' = S.insert ty tys
try' (try' (trivialHoles psnames [] elab ist)
(resolveTC False False 20 ty nroot elab ist)
True)
(try' (try' (resolveByCon (d 1) locs tys')
(resolveByLocals (d 1) locs tys')
True)
(if fromProver
then fail "cantSolveGoal"
else do attack; defer [] [] nroot; solve) True) True
getFn d (Just f) | d < maxDepth1 && usersname f = [f]
| otherwise = []
getFn d _ = []
usersname (UN _) = True
usersname (NS n _) = usersname n
usersname _ = False
resolveByCon d locs tys
= do t <- goal
let (f, _) = unApply t
case f of
P _ n _ ->
do let autohints = case lookupCtxtExact n (idris_autohints ist) of
Nothing -> []
Just hs -> hs
case lookupCtxtExact n (idris_datatypes ist) of
Just t -> do
let others = hints ++ con_names t ++ autohints
tryCons d locs tys (others ++ getFn d fn)
Nothing -> typeNotSearchable t
_ -> typeNotSearchable t
resolveByLocals d locs tys
= do env <- get_env
tryLocals d locs tys env
tryLocals d locs tys [] = fail "Locals failed"
tryLocals d locs tys ((x, _, t) : xs)
| x `elem` locs || x `notElem` psnames = tryLocals d locs tys xs
| otherwise = try' (tryLocal d (x : locs) tys x t)
(tryLocals d locs tys xs) True
tryCons d locs tys [] = fail "Constructors failed"
tryCons d locs tys (c : cs)
= try' (tryCon d locs tys c) (tryCons d locs tys cs) True
tryLocal d locs tys n t
= do let a = getPArity (delab ist (binderTy t))
tryLocalArg d locs tys n a
tryLocalArg d locs tys n 0 = elab (PRef (fileFC "prf") [] n)
tryLocalArg d locs tys n i
= simple_app False (tryLocalArg d locs tys n (i 1))
(psRec True d locs tys) "proof search local apply"
tryCon d locs tys n =
do ty <- goal
let imps = case lookupCtxtExact n (idris_implicits ist) of
Nothing -> []
Just args -> map isImp args
ps <- get_probs
hs <- get_holes
args <- map snd <$> try' (apply (Var n) imps)
(match_apply (Var n) imps) True
ps' <- get_probs
hs' <- get_holes
when (length ps < length ps') $ fail "Can't apply constructor"
let newhs = filter (\ (x, y) -> not x) (zip (map fst imps) args)
mapM_ (\ (_, h) -> do focus h
aty <- goal
psRec True d locs tys) newhs
solve
isImp (PImp p _ _ _ _) = (True, p)
isImp arg = (False, priority arg)
typeNotSearchable ty =
lift $ tfail $ FancyMsg $
[TextPart "Attempted to find an element of type",
TermPart ty,
TextPart "using proof search, but proof search only works on datatypes with constructors."] ++
case ty of
(Bind _ (Pi _ _ _ _) _) -> [TextPart "In particular, function types are not supported."]
_ -> []
resolveTC :: Bool
-> Bool
-> Int
-> Term
-> Name
-> (PTerm -> ElabD ())
-> IState -> ElabD ()
resolveTC def openOK depth top fn elab ist
= do hs <- get_holes
resTC' [] def openOK hs depth top fn elab ist
resTC' tcs def openOK topholes 0 topg fn elab ist = fail "Can't resolve interface"
resTC' tcs def openOK topholes 1 topg fn elab ist = try' (trivial elab ist) (resolveTC def False 0 topg fn elab ist) True
resTC' tcs defaultOn openOK topholes depth topg fn elab ist
= do compute
if openOK
then try' (resolveOpen (idris_openimpls ist))
resolveNormal
True
else resolveNormal
where
resolveOpen open = do t <- goal
blunderbuss t depth [] open
resolveNormal = do
g <- goal
let (argsok, okholePos) = case tcArgsOK g topholes of
Nothing -> (False, [])
Just hs -> (True, hs)
env <- get_env
probs <- get_probs
if not argsok
then lift $ tfail $ CantResolve True topg (probErr probs)
else do
ptm <- get_term
ulog <- getUnifyLog
hs <- get_holes
env <- get_env
t <- goal
let (tc, ttypes) = unApply (getRetTy t)
let okholes = case tc of
P _ n _ -> zip (repeat n) okholePos
_ -> []
traceWhen ulog ("Resolving interface " ++ show g ++ "\nin" ++ show env ++ "\n" ++ show okholes) $
try' (trivialTCs okholes elab ist)
(do addDefault t tc ttypes
let stk = map fst (filter snd $ elab_stack ist)
let impls = idris_openimpls ist ++ findImplementations ist t
blunderbuss t depth stk (stk ++ impls)) True
tcArgsOK ty hs | (P _ nc _, as) <- unApply (getRetTy ty), nc == numinterface && defaultOn
= Just []
tcArgsOK ty hs
= let (f, as) = unApply (getRetTy ty) in
case f of
P _ cn _ -> case lookupCtxtExact cn (idris_interfaces ist) of
Just ci -> tcDetArgsOK 0 (interface_determiners ci) hs as
Nothing -> if any (isMeta hs) as
then Nothing
else Just []
_ -> if any (isMeta hs) as
then Nothing
else Just []
tcDetArgsOK i ds hs (x : xs)
| i `elem` ds = if isMeta hs x
then Nothing
else tcDetArgsOK (i + 1) ds hs xs
| otherwise = do rs <- tcDetArgsOK (i + 1) ds hs xs
case x of
P _ n _ -> Just (i : rs)
_ -> Just rs
tcDetArgsOK _ _ _ [] = Just []
probErr [] = Msg ""
probErr ((_,_,_,_,err,_,_) : _) = err
isMeta :: [Name] -> Term -> Bool
isMeta ns (P _ n _) = n `elem` ns
isMeta _ _ = False
numinterface = sNS (sUN "Num") ["Interfaces","Prelude"]
addDefault t num@(P _ nc _) [P Bound a _] | nc == numinterface && defaultOn
= do focus a
fill (RConstant (AType (ATInt ITBig)))
solve
addDefault t f as
| all boundVar as = return ()
addDefault t f a = return ()
boundVar (P Bound _ _) = True
boundVar _ = False
blunderbuss t d stk [] = do ps <- get_probs
lift $ tfail $ CantResolve False topg (probErr ps)
blunderbuss t d stk (n:ns)
| n /= fn
= tryCatch (resolve n d)
(\e -> case e of
CantResolve True _ _ -> lift $ tfail e
_ -> blunderbuss t d stk ns)
| otherwise = blunderbuss t d stk ns
introImps = do g <- goal
case g of
(Bind _ (Pi _ _ _ _) sc) -> do attack; intro Nothing
num <- introImps
return (num + 1)
_ -> return 0
solven n = replicateM_ n solve
resolve n depth
| depth == 0 = fail "Can't resolve interface"
| otherwise
= do lams <- introImps
t <- goal
let imps = case lookupCtxtName n (idris_implicits ist) of
[] -> []
[args] -> map isImp (snd args)
xs -> error "The impossible happened - overloading is not expected here!"
ps <- get_probs
tm <- get_term
args <- map snd <$> apply (Var n) imps
solven lams
ps' <- get_probs
when (length ps < length ps' || unrecoverable ps') $
fail "Can't apply interface"
mapM_ (\ (_,n) -> do focus n
t' <- goal
let (tc', _) = unApply (getRetTy t')
let got = fst (unApply (getRetTy t))
let depth' = if tc' `elem` tcs
then depth 1 else depth
resTC' (got : tcs) defaultOn openOK topholes depth' topg fn elab ist)
(filter (\ (x, y) -> not x) (zip (map fst imps) args))
hs <- get_holes
ulog <- getUnifyLog
solve
traceWhen ulog ("Got " ++ show n) $ return ()
where isImp (PImp p _ _ _ _) = (True, p)
isImp arg = (False, priority arg)
findImplementations :: IState -> Term -> [Name]
findImplementations ist t
| (P _ n _, _) <- unApply (getRetTy t)
= case lookupCtxt n (idris_interfaces ist) of
[ci] -> let ins = interface_implementations ci in
[n | (n, True) <- ins, accessible n]
_ -> []
| otherwise = []
where accessible n = case lookupDefAccExact n False (tt_ctxt ist) of
Just (_, Hidden) -> False
Just (_, Private) -> False
_ -> True