module Idris.Reflection where
#if __GLASGOW_HASKELL__ < 710
import Control.Applicative ((<$>), (<*>), pure)
#endif
import Control.Monad (liftM, liftM2, liftM4)
import Control.Monad.State.Strict (lift)
import Data.Maybe (catMaybes)
import Data.List ((\\), findIndex)
import qualified Data.Text as T
import Idris.Core.Elaborate (claim, fill, focus, getNameFrom, initElaborator,
movelast, runElab, solve)
import Idris.Core.Evaluate (Def(TyDecl), initContext, lookupDefExact, lookupTyExact)
import Idris.Core.TT
import Idris.AbsSyntaxTree (ArgOpt(..),ElabD, IState(tt_ctxt, idris_implicits,idris_datatypes),
PArg'(..), PArg, PTactic, PTactic'(..), PTerm(..), Fixity (..),
initEState, pairCon, pairTy)
import Idris.Delaborate (delab)
data RErasure = RErased | RNotErased deriving Show
data RPlicity = RExplicit | RImplicit | RConstraint deriving Show
data RFunArg = RFunArg { argName :: Name
, argTy :: Raw
, argPlicity :: RPlicity
, erasure :: RErasure
}
deriving Show
data RTyDecl = RDeclare Name [RFunArg] Raw deriving Show
data RTyConArg = RParameter RFunArg
| RIndex RFunArg
deriving Show
data RCtorArg = RCtorParameter RFunArg | RCtorField RFunArg deriving Show
data RDatatype = RDatatype Name [RTyConArg] Raw [(Name, [RCtorArg], Raw)] deriving Show
rArgOpts :: RErasure -> [ArgOpt]
rArgOpts RErased = [InaccessibleArg]
rArgOpts _ = []
rFunArgToPArg :: RFunArg -> PArg
rFunArgToPArg (RFunArg n _ RExplicit e) = PExp 0 (rArgOpts e) n Placeholder
rFunArgToPArg (RFunArg n _ RImplicit e) = PImp 0 False (rArgOpts e) n Placeholder
rFunArgToPArg (RFunArg n _ RConstraint e) = PConstraint 0 (rArgOpts e) n Placeholder
data RFunClause = RMkFunClause Raw Raw
| RMkImpossibleClause Raw
deriving Show
data RFunDefn = RDefineFun Name [RFunClause] deriving Show
reflm :: String -> Name
reflm n = sNS (sUN n) ["Reflection", "Language"]
tacN :: String -> Name
tacN str = sNS (sUN str) ["Elab", "Reflection", "Language"]
reify :: IState -> Term -> ElabD PTactic
reify _ (P _ n _) | n == reflm "Intros" = return Intros
reify _ (P _ n _) | n == reflm "Trivial" = return Trivial
reify _ (P _ n _) | n == reflm "Instance" = return TCInstance
reify _ (P _ n _) | n == reflm "Solve" = return Solve
reify _ (P _ n _) | n == reflm "Compute" = return Compute
reify _ (P _ n _) | n == reflm "Skip" = return Skip
reify _ (P _ n _) | n == reflm "SourceFC" = return SourceFC
reify _ (P _ n _) | n == reflm "Unfocus" = return Unfocus
reify ist t@(App _ _ _)
| (P _ f _, args) <- unApply t = reifyApp ist f args
reify _ t = fail ("Unknown tactic " ++ show t)
reifyApp :: IState -> Name -> [Term] -> ElabD PTactic
reifyApp ist t [l, r] | t == reflm "Try" = liftM2 Try (reify ist l) (reify ist r)
reifyApp _ t [Constant (I i)]
| t == reflm "Search" = return (ProofSearch True True i Nothing [] [])
reifyApp _ t [x]
| t == reflm "Refine" = do n <- reifyTTName x
return $ Refine n []
reifyApp ist t [n, ty] | t == reflm "Claim" = do n' <- reifyTTName n
goal <- reifyTT ty
return $ Claim n' (delab ist goal)
reifyApp ist t [l, r] | t == reflm "Seq" = liftM2 TSeq (reify ist l) (reify ist r)
reifyApp ist t [Constant (Str n), x]
| t == reflm "GoalType" = liftM (GoalType n) (reify ist x)
reifyApp _ t [n] | t == reflm "Intro" = liftM (Intro . (:[])) (reifyTTName n)
reifyApp ist t [t'] | t == reflm "Induction" = liftM (Induction . delab ist) (reifyTT t')
reifyApp ist t [t'] | t == reflm "Case" = liftM (CaseTac . delab ist) (reifyTT t')
reifyApp ist t [t']
| t == reflm "ApplyTactic" = liftM (ApplyTactic . delab ist) (reifyTT t')
reifyApp ist t [t']
| t == reflm "Reflect" = liftM (Reflect . delab ist) (reifyTT t')
reifyApp ist t [t']
| t == reflm "ByReflection" = liftM (ByReflection . delab ist) (reifyTT t')
reifyApp _ t [t']
| t == reflm "Fill" = liftM (Fill . PQuote) (reifyRaw t')
reifyApp ist t [t']
| t == reflm "Exact" = liftM (Exact . delab ist) (reifyTT t')
reifyApp ist t [x]
| t == reflm "Focus" = liftM Focus (reifyTTName x)
reifyApp ist t [t']
| t == reflm "Rewrite" = liftM (Rewrite . delab ist) (reifyTT t')
reifyApp ist t [n, t']
| t == reflm "LetTac" = do n' <- reifyTTName n
t'' <- reifyTT t'
return $ LetTac n' (delab ist t')
reifyApp ist t [n, tt', t']
| t == reflm "LetTacTy" = do n' <- reifyTTName n
tt'' <- reifyTT tt'
t'' <- reifyTT t'
return $ LetTacTy n' (delab ist tt'') (delab ist t'')
reifyApp ist t [errs]
| t == reflm "Fail" = fmap TFail (reifyReportParts errs)
reifyApp _ f args = fail ("Unknown tactic " ++ show (f, args))
reifyBool :: Term -> ElabD Bool
reifyBool (P _ n _) | n == sNS (sUN "True") ["Bool", "Prelude"] = return True
| n == sNS (sUN "False") ["Bool", "Prelude"] = return False
reifyBool tm = fail $ "Not a Boolean: " ++ show tm
reifyInt :: Term -> ElabD Int
reifyInt (Constant (I i)) = return i
reifyInt tm = fail $ "Not an Int: " ++ show tm
reifyPair :: (Term -> ElabD a) -> (Term -> ElabD b) -> Term -> ElabD (a, b)
reifyPair left right (App _ (App _ (App _ (App _ (P _ n _) _) _) x) y)
| n == pairCon = liftM2 (,) (left x) (right y)
reifyPair left right tm = fail $ "Not a pair: " ++ show tm
reifyList :: (Term -> ElabD a) -> Term -> ElabD [a]
reifyList getElt lst =
case unList lst of
Nothing -> fail "Couldn't reify a list"
Just xs -> mapM getElt xs
reifyReportParts :: Term -> ElabD [ErrorReportPart]
reifyReportParts errs =
case unList errs of
Nothing -> fail "Failed to reify errors"
Just errs' ->
let parts = mapM reifyReportPart errs' in
case parts of
Left err -> fail $ "Couldn't reify \"Fail\" tactic - " ++ show err
Right errs'' ->
return errs''
reifyTT :: Term -> ElabD Term
reifyTT t@(App _ _ _)
| (P _ f _, args) <- unApply t = reifyTTApp f args
reifyTT t@(P _ n _)
| n == reflm "Erased" = return $ Erased
reifyTT t@(P _ n _)
| n == reflm "Impossible" = return $ Impossible
reifyTT t = fail ("Unknown reflection term: " ++ show t)
reifyTTApp :: Name -> [Term] -> ElabD Term
reifyTTApp t [nt, n, x]
| t == reflm "P" = do nt' <- reifyTTNameType nt
n' <- reifyTTName n
x' <- reifyTT x
return $ P nt' n' x'
reifyTTApp t [Constant (I i)]
| t == reflm "V" = return $ V i
reifyTTApp t [n, b, x]
| t == reflm "Bind" = do n' <- reifyTTName n
b' <- reifyTTBinder reifyTT (reflm "TT") b
x' <- reifyTT x
return $ Bind n' b' x'
reifyTTApp t [f, x]
| t == reflm "App" = do f' <- reifyTT f
x' <- reifyTT x
return $ App Complete f' x'
reifyTTApp t [c]
| t == reflm "TConst" = liftM Constant (reifyTTConst c)
reifyTTApp t [t', Constant (I i)]
| t == reflm "Proj" = do t'' <- reifyTT t'
return $ Proj t'' i
reifyTTApp t [tt]
| t == reflm "TType" = liftM TType (reifyTTUExp tt)
reifyTTApp t [tt]
| t == reflm "UType" = liftM UType (reifyUniverse tt)
reifyTTApp t args = fail ("Unknown reflection term: " ++ show (t, args))
reifyUniverse :: Term -> ElabD Universe
reifyUniverse (P _ n _) | n == reflm "AllTypes" = return AllTypes
| n == reflm "UniqueType" = return UniqueType
| n == reflm "NullType" = return NullType
reifyUniverse tm = fail ("Unknown reflection universe: " ++ show tm)
reifyRaw :: Term -> ElabD Raw
reifyRaw t@(App _ _ _)
| (P _ f _, args) <- unApply t = reifyRawApp f args
reifyRaw t@(P _ n _)
| n == reflm "RType" = return $ RType
reifyRaw t = fail ("Unknown reflection raw term in reifyRaw: " ++ show t)
reifyRawApp :: Name -> [Term] -> ElabD Raw
reifyRawApp t [n]
| t == reflm "Var" = liftM Var (reifyTTName n)
reifyRawApp t [n, b, x]
| t == reflm "RBind" = do n' <- reifyTTName n
b' <- reifyTTBinder reifyRaw (reflm "Raw") b
x' <- reifyRaw x
return $ RBind n' b' x'
reifyRawApp t [f, x]
| t == reflm "RApp" = liftM2 RApp (reifyRaw f) (reifyRaw x)
reifyRawApp t [c]
| t == reflm "RConstant" = liftM RConstant (reifyTTConst c)
reifyRawApp t args = fail ("Unknown reflection raw term in reifyRawApp: " ++ show (t, args))
reifyTTName :: Term -> ElabD Name
reifyTTName t
| (P _ f _, args) <- unApply t = reifyTTNameApp f args
reifyTTName t = fail ("Unknown reflection term name: " ++ show t)
reifyTTNameApp :: Name -> [Term] -> ElabD Name
reifyTTNameApp t [Constant (Str n)]
| t == reflm "UN" = return $ sUN n
reifyTTNameApp t [n, ns]
| t == reflm "NS" = do n' <- reifyTTName n
ns' <- reifyTTNamespace ns
return $ sNS n' ns'
reifyTTNameApp t [Constant (I i), Constant (Str n)]
| t == reflm "MN" = return $ sMN i n
reifyTTNameApp t [sn]
| t == reflm "SN"
, (P _ f _, args) <- unApply sn = SN <$> reifySN f args
where reifySN :: Name -> [Term] -> ElabD SpecialName
reifySN t [Constant (I i), n1, n2]
| t == reflm "WhereN" = WhereN i <$> reifyTTName n1 <*> reifyTTName n2
reifySN t [Constant (I i), n]
| t == reflm "WithN" = WithN i <$> reifyTTName n
reifySN t [n, ss]
| t == reflm "InstanceN" =
case unList ss of
Nothing -> fail "Can't reify InstanceN strings"
Just ss' -> InstanceN <$> reifyTTName n <*>
pure [T.pack s | Constant (Str s) <- ss']
reifySN t [n, Constant (Str s)]
| t == reflm "ParentN" =
ParentN <$> reifyTTName n <*> pure (T.pack s)
reifySN t [n]
| t == reflm "MethodN" =
MethodN <$> reifyTTName n
reifySN t [fc, n]
| t == reflm "CaseN" =
CaseN <$> (FC' <$> reifyFC fc) <*> reifyTTName n
reifySN t [n]
| t == reflm "ElimN" =
ElimN <$> reifyTTName n
reifySN t [n]
| t == reflm "InstanceCtorN" =
InstanceCtorN <$> reifyTTName n
reifySN t [n1, n2]
| t == reflm "MetaN" =
MetaN <$> reifyTTName n1 <*> reifyTTName n2
reifySN t args = fail $ "Can't reify special name " ++ show t ++ show args
reifyTTNameApp t args = fail ("Unknown reflection term name: " ++ show (t, args))
reifyTTNamespace :: Term -> ElabD [String]
reifyTTNamespace t@(App _ _ _)
= case unApply t of
(P _ f _, [Constant StrType])
| f == sNS (sUN "Nil") ["List", "Prelude"] -> return []
(P _ f _, [Constant StrType, Constant (Str n), ns])
| f == sNS (sUN "::") ["List", "Prelude"] -> liftM (n:) (reifyTTNamespace ns)
_ -> fail ("Unknown reflection namespace arg: " ++ show t)
reifyTTNamespace t = fail ("Unknown reflection namespace arg: " ++ show t)
reifyTTNameType :: Term -> ElabD NameType
reifyTTNameType t@(P _ n _) | n == reflm "Bound" = return $ Bound
reifyTTNameType t@(P _ n _) | n == reflm "Ref" = return $ Ref
reifyTTNameType t@(App _ _ _)
= case unApply t of
(P _ f _, [Constant (I tag), Constant (I num)])
| f == reflm "DCon" -> return $ DCon tag num False
| f == reflm "TCon" -> return $ TCon tag num
_ -> fail ("Unknown reflection name type: " ++ show t)
reifyTTNameType t = fail ("Unknown reflection name type: " ++ show t)
reifyTTBinder :: (Term -> ElabD a) -> Name -> Term -> ElabD (Binder a)
reifyTTBinder reificator binderType t@(App _ _ _)
= case unApply t of
(P _ f _, bt:args) | forget bt == Var binderType
-> reifyTTBinderApp reificator f args
_ -> fail ("Mismatching binder reflection: " ++ show t)
reifyTTBinder _ _ t = fail ("Unknown reflection binder: " ++ show t)
reifyTTBinderApp :: (Term -> ElabD a) -> Name -> [Term] -> ElabD (Binder a)
reifyTTBinderApp reif f [t]
| f == reflm "Lam" = liftM Lam (reif t)
reifyTTBinderApp reif f [t, k]
| f == reflm "Pi" = liftM2 (Pi Nothing) (reif t) (reif k)
reifyTTBinderApp reif f [x, y]
| f == reflm "Let" = liftM2 Let (reif x) (reif y)
reifyTTBinderApp reif f [t]
| f == reflm "Hole" = liftM Hole (reif t)
reifyTTBinderApp reif f [t]
| f == reflm "GHole" = liftM (GHole 0 []) (reif t)
reifyTTBinderApp reif f [x, y]
| f == reflm "Guess" = liftM2 Guess (reif x) (reif y)
reifyTTBinderApp reif f [t]
| f == reflm "PVar" = liftM PVar (reif t)
reifyTTBinderApp reif f [t]
| f == reflm "PVTy" = liftM PVTy (reif t)
reifyTTBinderApp _ f args = fail ("Unknown reflection binder: " ++ show (f, args))
reifyTTConst :: Term -> ElabD Const
reifyTTConst (P _ n _) | n == reflm "StrType" = return $ StrType
reifyTTConst (P _ n _) | n == reflm "VoidType" = return $ VoidType
reifyTTConst (P _ n _) | n == reflm "Forgot" = return $ Forgot
reifyTTConst t@(App _ _ _)
| (P _ f _, [arg]) <- unApply t = reifyTTConstApp f arg
reifyTTConst t = fail ("Unknown reflection constant: " ++ show t)
reifyTTConstApp :: Name -> Term -> ElabD Const
reifyTTConstApp f aty
| f == reflm "AType" = fmap AType (reifyArithTy aty)
reifyTTConstApp f (Constant c@(I _))
| f == reflm "I" = return $ c
reifyTTConstApp f (Constant c@(BI _))
| f == reflm "BI" = return $ c
reifyTTConstApp f (Constant c@(Fl _))
| f == reflm "Fl" = return $ c
reifyTTConstApp f (Constant c@(Ch _))
| f == reflm "Ch" = return $ c
reifyTTConstApp f (Constant c@(Str _))
| f == reflm "Str" = return $ c
reifyTTConstApp f (Constant c@(B8 _))
| f == reflm "B8" = return $ c
reifyTTConstApp f (Constant c@(B16 _))
| f == reflm "B16" = return $ c
reifyTTConstApp f (Constant c@(B32 _))
| f == reflm "B32" = return $ c
reifyTTConstApp f (Constant c@(B64 _))
| f == reflm "B64" = return $ c
reifyTTConstApp f v@(P _ _ _) =
lift . tfail . Msg $
"Can't reify the variable " ++
show v ++
" as a constant, because its value is not statically known."
reifyTTConstApp f arg = fail ("Unknown reflection constant: " ++ show (f, arg))
reifyArithTy :: Term -> ElabD ArithTy
reifyArithTy (App _ (P _ n _) intTy) | n == reflm "ATInt" = fmap ATInt (reifyIntTy intTy)
reifyArithTy (P _ n _) | n == reflm "ATFloat" = return ATFloat
reifyArithTy x = fail ("Couldn't reify reflected ArithTy: " ++ show x)
reifyNativeTy :: Term -> ElabD NativeTy
reifyNativeTy (P _ n _) | n == reflm "IT8" = return IT8
reifyNativeTy (P _ n _) | n == reflm "IT8" = return IT8
reifyNativeTy (P _ n _) | n == reflm "IT8" = return IT8
reifyNativeTy (P _ n _) | n == reflm "IT8" = return IT8
reifyNativeTy x = fail $ "Couldn't reify reflected NativeTy " ++ show x
reifyIntTy :: Term -> ElabD IntTy
reifyIntTy (App _ (P _ n _) nt) | n == reflm "ITFixed" = fmap ITFixed (reifyNativeTy nt)
reifyIntTy (P _ n _) | n == reflm "ITNative" = return ITNative
reifyIntTy (P _ n _) | n == reflm "ITBig" = return ITBig
reifyIntTy (P _ n _) | n == reflm "ITChar" = return ITChar
reifyIntTy tm = fail $ "The term " ++ show tm ++ " is not a reflected IntTy"
reifyTTUExp :: Term -> ElabD UExp
reifyTTUExp t@(App _ _ _)
= case unApply t of
(P _ f _, [Constant (I i)]) | f == reflm "UVar" -> return $ UVar i
(P _ f _, [Constant (I i)]) | f == reflm "UVal" -> return $ UVal i
_ -> fail ("Unknown reflection type universe expression: " ++ show t)
reifyTTUExp t = fail ("Unknown reflection type universe expression: " ++ show t)
reflCall :: String -> [Raw] -> Raw
reflCall funName args
= raw_apply (Var (reflm funName)) args
reflect :: Term -> Raw
reflect = reflectTTQuote []
reflectRaw :: Raw -> Raw
reflectRaw = reflectRawQuote []
claimTy :: Name -> Raw -> ElabD Name
claimTy n ty = do n' <- getNameFrom n
claim n' ty
return n'
intToReflectedNat :: Int -> Raw
intToReflectedNat i = if i <= 0
then Var (natN "Z")
else RApp (Var (natN "S")) (intToReflectedNat (i 1))
where natN :: String -> Name
natN n = sNS (sUN n) ["Nat", "Prelude"]
reflectFixity :: Fixity -> Raw
reflectFixity (Infixl p) = RApp (Var (tacN "Infixl")) (intToReflectedNat p)
reflectFixity (Infixr p) = RApp (Var (tacN "Infixr")) (intToReflectedNat p)
reflectFixity (InfixN p) = RApp (Var (tacN "InfixN")) (intToReflectedNat p)
reflectFixity (PrefixN p) = RApp (Var (tacN "PrefixN")) (intToReflectedNat p)
reflectTTQuotePattern :: [Name] -> Term -> ElabD ()
reflectTTQuotePattern unq (P _ n _)
| n `elem` unq =
do fill (Var n) ; solve
| otherwise =
do tyannot <- claimTy (sMN 0 "pTyAnnot") (Var (reflm "TT"))
movelast tyannot
nt <- getNameFrom (sMN 0 "nt")
claim nt (Var (reflm "NameType"))
movelast nt
n' <- getNameFrom (sMN 0 "n")
claim n' (Var (reflm "TTName"))
fill $ reflCall "P" [Var nt, Var n', Var tyannot]
solve
focus n'; reflectNameQuotePattern n
reflectTTQuotePattern unq (V n)
= do fill $ reflCall "V" [RConstant (I n)]
solve
reflectTTQuotePattern unq (Bind n b x)
= do x' <- claimTy (sMN 0 "sc") (Var (reflm "TT"))
movelast x'
b' <- getNameFrom (sMN 0 "binder")
claim b' (RApp (Var (sNS (sUN "Binder") ["Reflection", "Language"]))
(Var (sNS (sUN "TT") ["Reflection", "Language"])))
if n `elem` freeNames x
then do fill $ reflCall "Bind"
[reflectName n,
Var b',
Var x']
solve
else do any <- getNameFrom (sMN 0 "anyName")
claim any (Var (reflm "TTName"))
movelast any
fill $ reflCall "Bind"
[Var any,
Var b',
Var x']
solve
focus x'; reflectTTQuotePattern unq x
focus b'; reflectBinderQuotePattern reflectTTQuotePattern (Var $ reflm "TT") unq b
reflectTTQuotePattern unq (App _ f x)
= do f' <- claimTy (sMN 0 "f") (Var (reflm "TT")) ; movelast f'
x' <- claimTy (sMN 0 "x") (Var (reflm "TT")) ; movelast x'
fill $ reflCall "App" [Var f', Var x']
solve
focus f'; reflectTTQuotePattern unq f
focus x'; reflectTTQuotePattern unq x
reflectTTQuotePattern unq (Constant c)
= do fill $ reflCall "TConst" [reflectConstant c]
solve
reflectTTQuotePattern unq (Proj t i)
= lift . tfail . InternalMsg $
"Phase error! The Proj constructor is for optimization only and should not have been reflected during elaboration."
reflectTTQuotePattern unq Erased
= do erased <- claimTy (sMN 0 "erased") (Var (reflm "TT"))
movelast erased
fill $ (Var erased)
reflectTTQuotePattern unq Impossible
= lift . tfail . InternalMsg $
"Phase error! The Impossible constructor is for optimization only and should not have been reflected during elaboration."
reflectTTQuotePattern unq (TType exp)
= do ue <- getNameFrom (sMN 0 "uexp")
claim ue (Var (sNS (sUN "TTUExp") ["Reflection", "Language"]))
movelast ue
fill $ reflCall "TType" [Var ue]
solve
reflectTTQuotePattern unq (UType u)
= do uH <- getNameFrom (sMN 0 "someUniv")
claim uH (Var (reflm "Universe"))
movelast uH
fill $ reflCall "UType" [Var uH]
solve
focus uH
fill (Var (reflm (case u of
NullType -> "NullType"
UniqueType -> "UniqueType"
AllTypes -> "AllTypes")))
solve
reflectRawQuotePattern :: [Name] -> Raw -> ElabD ()
reflectRawQuotePattern unq (Var n)
| n `elem` unq = do fill (Var n); solve
| otherwise = do fill (reflCall "Var" [reflectName n]); solve
reflectRawQuotePattern unq (RBind n b sc) =
do scH <- getNameFrom (sMN 0 "sc")
claim scH (Var (reflm "Raw"))
movelast scH
bH <- getNameFrom (sMN 0 "binder")
claim bH (RApp (Var (reflm "Binder"))
(Var (reflm "Raw")))
if n `elem` freeNamesR sc
then do fill $ reflCall "RBind" [reflectName n,
Var bH,
Var scH]
solve
else do any <- getNameFrom (sMN 0 "anyName")
claim any (Var (reflm "TTName"))
movelast any
fill $ reflCall "RBind" [Var any, Var bH, Var scH]
solve
focus scH; reflectRawQuotePattern unq sc
focus bH; reflectBinderQuotePattern reflectRawQuotePattern (Var $ reflm "Raw") unq b
where freeNamesR (Var n) = [n]
freeNamesR (RBind n (Let t v) body) = concat [freeNamesR v,
freeNamesR body \\ [n],
freeNamesR t]
freeNamesR (RBind n b body) = freeNamesR (binderTy b) ++
(freeNamesR body \\ [n])
freeNamesR (RApp f x) = freeNamesR f ++ freeNamesR x
freeNamesR RType = []
freeNamesR (RUType _) = []
freeNamesR (RConstant _) = []
reflectRawQuotePattern unq (RApp f x) =
do fH <- getNameFrom (sMN 0 "f")
claim fH (Var (reflm "Raw"))
movelast fH
xH <- getNameFrom (sMN 0 "x")
claim xH (Var (reflm "Raw"))
movelast xH
fill $ reflCall "RApp" [Var fH, Var xH]
solve
focus fH; reflectRawQuotePattern unq f
focus xH; reflectRawQuotePattern unq x
reflectRawQuotePattern unq RType =
do fill (Var (reflm "RType"))
solve
reflectRawQuotePattern unq (RUType univ) =
do uH <- getNameFrom (sMN 0 "universe")
claim uH (Var (reflm "Universe"))
movelast uH
fill $ reflCall "RUType" [Var uH]
solve
focus uH; fill (reflectUniverse univ); solve
reflectRawQuotePattern unq (RConstant c) =
do cH <- getNameFrom (sMN 0 "const")
claim cH (Var (reflm "Constant"))
movelast cH
fill (reflCall "RConstant" [Var cH]); solve
focus cH
fill (reflectConstant c); solve
reflectBinderQuotePattern :: ([Name] -> a -> ElabD ()) -> Raw -> [Name] -> Binder a -> ElabD ()
reflectBinderQuotePattern q ty unq (Lam t)
= do t' <- claimTy (sMN 0 "ty") ty; movelast t'
fill $ reflCall "Lam" [ty, Var t']
solve
focus t'; q unq t
reflectBinderQuotePattern q ty unq (Pi _ t k)
= do t' <- claimTy (sMN 0 "ty") ty; movelast t'
k' <- claimTy (sMN 0 "k") ty; movelast k';
fill $ reflCall "Pi" [ty, Var t', Var k']
solve
focus t'; q unq t
reflectBinderQuotePattern q ty unq (Let x y)
= do x' <- claimTy (sMN 0 "ty") ty; movelast x';
y' <- claimTy (sMN 0 "v")ty; movelast y';
fill $ reflCall "Let" [ty, Var x', Var y']
solve
focus x'; q unq x
focus y'; q unq y
reflectBinderQuotePattern q ty unq (NLet x y)
= do x' <- claimTy (sMN 0 "ty") ty; movelast x'
y' <- claimTy (sMN 0 "v") ty; movelast y'
fill $ reflCall "Let" [ty, Var x', Var y']
solve
focus x'; q unq x
focus y'; q unq y
reflectBinderQuotePattern q ty unq (Hole t)
= do t' <- claimTy (sMN 0 "ty") ty; movelast t'
fill $ reflCall "Hole" [ty, Var t']
solve
focus t'; q unq t
reflectBinderQuotePattern q ty unq (GHole _ _ t)
= do t' <- claimTy (sMN 0 "ty") ty; movelast t'
fill $ reflCall "GHole" [ty, Var t']
solve
focus t'; q unq t
reflectBinderQuotePattern q ty unq (Guess x y)
= do x' <- claimTy (sMN 0 "ty") ty; movelast x'
y' <- claimTy (sMN 0 "v") ty; movelast y'
fill $ reflCall "Guess" [ty, Var x', Var y']
solve
focus x'; q unq x
focus y'; q unq y
reflectBinderQuotePattern q ty unq (PVar t)
= do t' <- claimTy (sMN 0 "ty") ty; movelast t'
fill $ reflCall "PVar" [ty, Var t']
solve
focus t'; q unq t
reflectBinderQuotePattern q ty unq (PVTy t)
= do t' <- claimTy (sMN 0 "ty") ty; movelast t'
fill $ reflCall "PVTy" [ty, Var t']
solve
focus t'; q unq t
reflectUniverse :: Universe -> Raw
reflectUniverse u =
(Var (reflm (case u of
NullType -> "NullType"
UniqueType -> "UniqueType"
AllTypes -> "AllTypes")))
reflectTTQuote :: [Name] -> Term -> Raw
reflectTTQuote unq (P nt n t)
| n `elem` unq = Var n
| otherwise = reflCall "P" [reflectNameType nt, reflectName n, reflectTTQuote unq t]
reflectTTQuote unq (V n)
= reflCall "V" [RConstant (I n)]
reflectTTQuote unq (Bind n b x)
= reflCall "Bind" [reflectName n, reflectBinderQuote reflectTTQuote (reflm "TT") unq b, reflectTTQuote unq x]
reflectTTQuote unq (App _ f x)
= reflCall "App" [reflectTTQuote unq f, reflectTTQuote unq x]
reflectTTQuote unq (Constant c)
= reflCall "TConst" [reflectConstant c]
reflectTTQuote unq (TType exp) = reflCall "TType" [reflectUExp exp]
reflectTTQuote unq (UType u) = reflCall "UType" [reflectUniverse u]
reflectTTQuote _ (Proj _ _) =
error "Phase error! The Proj constructor is for optimization only and should not have been reflected during elaboration."
reflectTTQuote unq Erased = Var (reflm "Erased")
reflectTTQuote _ Impossible =
error "Phase error! The Impossible constructor is for optimization only and should not have been reflected during elaboration."
reflectRawQuote :: [Name] -> Raw -> Raw
reflectRawQuote unq (Var n)
| n `elem` unq = Var n
| otherwise = reflCall "Var" [reflectName n]
reflectRawQuote unq (RBind n b r) =
reflCall "RBind" [reflectName n, reflectBinderQuote reflectRawQuote (reflm "Raw") unq b, reflectRawQuote unq r]
reflectRawQuote unq (RApp f x) =
reflCall "RApp" [reflectRawQuote unq f, reflectRawQuote unq x]
reflectRawQuote unq RType = Var (reflm "RType")
reflectRawQuote unq (RUType u) =
reflCall "RUType" [reflectUniverse u]
reflectRawQuote unq (RConstant cst) = reflCall "RConstant" [reflectConstant cst]
reflectNameType :: NameType -> Raw
reflectNameType (Bound) = Var (reflm "Bound")
reflectNameType (Ref) = Var (reflm "Ref")
reflectNameType (DCon x y _)
= reflCall "DCon" [RConstant (I x), RConstant (I y)]
reflectNameType (TCon x y)
= reflCall "TCon" [RConstant (I x), RConstant (I y)]
reflectName :: Name -> Raw
reflectName (UN s)
= reflCall "UN" [RConstant (Str (str s))]
reflectName (NS n ns)
= reflCall "NS" [ reflectName n
, foldr (\ n s ->
raw_apply ( Var $ sNS (sUN "::") ["List", "Prelude"] )
[ RConstant StrType, RConstant (Str n), s ])
( raw_apply ( Var $ sNS (sUN "Nil") ["List", "Prelude"] )
[ RConstant StrType ])
(map str ns)
]
reflectName (MN i n)
= reflCall "MN" [RConstant (I i), RConstant (Str (str n))]
reflectName (SN sn) = raw_apply (Var (reflm "SN")) [reflectSpecialName sn]
reflectName (SymRef _) = error "The impossible happened: symbol table ref survived IBC loading"
reflectSpecialName :: SpecialName -> Raw
reflectSpecialName (WhereN i n1 n2) =
reflCall "WhereN" [RConstant (I i), reflectName n1, reflectName n2]
reflectSpecialName (WithN i n) = reflCall "WithN" [ RConstant (I i)
, reflectName n
]
reflectSpecialName (InstanceN inst ss) =
reflCall "InstanceN" [ reflectName inst
, mkList (RConstant StrType) $
map (RConstant . Str . T.unpack) ss
]
reflectSpecialName (ParentN n s) =
reflCall "ParentN" [reflectName n, RConstant (Str (T.unpack s))]
reflectSpecialName (MethodN n) =
reflCall "MethodN" [reflectName n]
reflectSpecialName (CaseN fc n) =
reflCall "CaseN" [reflectFC (unwrapFC fc), reflectName n]
reflectSpecialName (ElimN n) =
reflCall "ElimN" [reflectName n]
reflectSpecialName (InstanceCtorN n) =
reflCall "InstanceCtorN" [reflectName n]
reflectSpecialName (MetaN parent meta) =
reflCall "MetaN" [reflectName parent, reflectName meta]
reflectNameQuotePattern :: Name -> ElabD ()
reflectNameQuotePattern n@(UN s)
= do fill $ reflectName n
solve
reflectNameQuotePattern n@(NS _ _)
= do fill $ reflectName n
solve
reflectNameQuotePattern (MN _ n)
= do i <- getNameFrom (sMN 0 "mnCounter")
claim i (RConstant (AType (ATInt ITNative)))
movelast i
fill $ reflCall "MN" [Var i, RConstant (Str $ T.unpack n)]
solve
reflectNameQuotePattern _
= do nameHole <- getNameFrom (sMN 0 "name")
claim nameHole (Var (reflm "TTName"))
movelast nameHole
fill (Var nameHole)
solve
reflectBinder :: Binder Term -> Raw
reflectBinder = reflectBinderQuote reflectTTQuote (reflm "TT") []
reflectBinderQuote :: ([Name] -> a -> Raw) -> Name -> [Name] -> Binder a -> Raw
reflectBinderQuote q ty unq (Lam t)
= reflCall "Lam" [Var ty, q unq t]
reflectBinderQuote q ty unq (Pi _ t k)
= reflCall "Pi" [Var ty, q unq t, q unq k]
reflectBinderQuote q ty unq (Let x y)
= reflCall "Let" [Var ty, q unq x, q unq y]
reflectBinderQuote q ty unq (NLet x y)
= reflCall "Let" [Var ty, q unq x, q unq y]
reflectBinderQuote q ty unq (Hole t)
= reflCall "Hole" [Var ty, q unq t]
reflectBinderQuote q ty unq (GHole _ _ t)
= reflCall "GHole" [Var ty, q unq t]
reflectBinderQuote q ty unq (Guess x y)
= reflCall "Guess" [Var ty, q unq x, q unq y]
reflectBinderQuote q ty unq (PVar t)
= reflCall "PVar" [Var ty, q unq t]
reflectBinderQuote q ty unq (PVTy t)
= reflCall "PVTy" [Var ty, q unq t]
mkList :: Raw -> [Raw] -> Raw
mkList ty [] = RApp (Var (sNS (sUN "Nil") ["List", "Prelude"])) ty
mkList ty (x:xs) = RApp (RApp (RApp (Var (sNS (sUN "::") ["List", "Prelude"])) ty)
x)
(mkList ty xs)
reflectConstant :: Const -> Raw
reflectConstant c@(I _) = reflCall "I" [RConstant c]
reflectConstant c@(BI _) = reflCall "BI" [RConstant c]
reflectConstant c@(Fl _) = reflCall "Fl" [RConstant c]
reflectConstant c@(Ch _) = reflCall "Ch" [RConstant c]
reflectConstant c@(Str _) = reflCall "Str" [RConstant c]
reflectConstant c@(B8 _) = reflCall "B8" [RConstant c]
reflectConstant c@(B16 _) = reflCall "B16" [RConstant c]
reflectConstant c@(B32 _) = reflCall "B32" [RConstant c]
reflectConstant c@(B64 _) = reflCall "B64" [RConstant c]
reflectConstant (AType (ATInt ITNative)) = reflCall "AType" [reflCall "ATInt" [Var (reflm "ITNative")]]
reflectConstant (AType (ATInt ITBig)) = reflCall "AType" [reflCall "ATInt" [Var (reflm "ITBig")]]
reflectConstant (AType ATFloat) = reflCall "AType" [Var (reflm "ATFloat")]
reflectConstant (AType (ATInt ITChar)) = reflCall "AType" [reflCall "ATInt" [Var (reflm "ITChar")]]
reflectConstant StrType = Var (reflm "StrType")
reflectConstant (AType (ATInt (ITFixed IT8))) = reflCall "AType" [reflCall "ATInt" [reflCall "ITFixed" [Var (reflm "IT8")]]]
reflectConstant (AType (ATInt (ITFixed IT16))) = reflCall "AType" [reflCall "ATInt" [reflCall "ITFixed" [Var (reflm "IT16")]]]
reflectConstant (AType (ATInt (ITFixed IT32))) = reflCall "AType" [reflCall "ATInt" [reflCall "ITFixed" [Var (reflm "IT32")]]]
reflectConstant (AType (ATInt (ITFixed IT64))) = reflCall "AType" [reflCall "ATInt" [reflCall "ITFixed" [Var (reflm "IT64")]]]
reflectConstant VoidType = Var (reflm "VoidType")
reflectConstant Forgot = Var (reflm "Forgot")
reflectConstant WorldType = Var (reflm "WorldType")
reflectConstant TheWorld = Var (reflm "TheWorld")
reflectUExp :: UExp -> Raw
reflectUExp (UVar i) = reflCall "UVar" [RConstant (I i)]
reflectUExp (UVal i) = reflCall "UVal" [RConstant (I i)]
reflectEnv :: Env -> Raw
reflectEnv = foldr consToEnvList emptyEnvList
where
consToEnvList :: (Name, Binder Term) -> Raw -> Raw
consToEnvList (n, b) l
= raw_apply (Var (sNS (sUN "::") ["List", "Prelude"]))
[ envTupleType
, raw_apply (Var pairCon) [ (Var $ reflm "TTName")
, (RApp (Var $ reflm "Binder")
(Var $ reflm "TT"))
, reflectName n
, reflectBinder b
]
, l
]
emptyEnvList :: Raw
emptyEnvList = raw_apply (Var (sNS (sUN "Nil") ["List", "Prelude"]))
[envTupleType]
reifyEnv :: Term -> ElabD Env
reifyEnv = reifyList (reifyPair reifyTTName (reifyTTBinder reifyTT (reflm "TT")))
rawBool :: Bool -> Raw
rawBool True = Var (sNS (sUN "True") ["Bool", "Prelude"])
rawBool False = Var (sNS (sUN "False") ["Bool", "Prelude"])
rawNil :: Raw -> Raw
rawNil ty = raw_apply (Var (sNS (sUN "Nil") ["List", "Prelude"])) [ty]
rawCons :: Raw -> Raw -> Raw -> Raw
rawCons ty hd tl = raw_apply (Var (sNS (sUN "::") ["List", "Prelude"])) [ty, hd, tl]
rawList :: Raw -> [Raw] -> Raw
rawList ty = foldr (rawCons ty) (rawNil ty)
rawPairTy :: Raw -> Raw -> Raw
rawPairTy t1 t2 = raw_apply (Var pairTy) [t1, t2]
rawPair :: (Raw, Raw) -> (Raw, Raw) -> Raw
rawPair (a, b) (x, y) = raw_apply (Var pairCon) [a, b, x, y]
rawTripleTy :: Raw -> Raw -> Raw -> Raw
rawTripleTy a b c = rawPairTy a (rawPairTy b c)
rawTriple :: (Raw, Raw, Raw) -> (Raw, Raw, Raw) -> Raw
rawTriple (a, b, c) (x, y, z) = rawPair (a, rawPairTy b c) (x, rawPair (b, c) (y, z))
reflectCtxt :: [(Name, Type)] -> Raw
reflectCtxt ctxt = rawList (rawPairTy (Var $ reflm "TTName") (Var $ reflm "TT"))
(map (\ (n, t) -> (rawPair (Var $ reflm "TTName", Var $ reflm "TT")
(reflectName n, reflect t)))
ctxt)
reflectErr :: Err -> Raw
reflectErr (Msg msg) = raw_apply (Var $ reflErrName "Msg") [RConstant (Str msg)]
reflectErr (InternalMsg msg) = raw_apply (Var $ reflErrName "InternalMsg") [RConstant (Str msg)]
reflectErr (CantUnify b (t1,_) (t2,_) e ctxt i) =
raw_apply (Var $ reflErrName "CantUnify")
[ rawBool b
, reflect t1
, reflect t2
, reflectErr e
, reflectCtxt ctxt
, RConstant (I i)]
reflectErr (InfiniteUnify n tm ctxt) =
raw_apply (Var $ reflErrName "InfiniteUnify")
[ reflectName n
, reflect tm
, reflectCtxt ctxt
]
reflectErr (CantConvert t t' ctxt) =
raw_apply (Var $ reflErrName "CantConvert")
[ reflect t
, reflect t'
, reflectCtxt ctxt
]
reflectErr (CantSolveGoal t ctxt) =
raw_apply (Var $ reflErrName "CantSolveGoal")
[ reflect t
, reflectCtxt ctxt
]
reflectErr (UnifyScope n n' t ctxt) =
raw_apply (Var $ reflErrName "UnifyScope")
[ reflectName n
, reflectName n'
, reflect t
, reflectCtxt ctxt
]
reflectErr (CantInferType str) =
raw_apply (Var $ reflErrName "CantInferType") [RConstant (Str str)]
reflectErr (NonFunctionType t t') =
raw_apply (Var $ reflErrName "NonFunctionType") [reflect t, reflect t']
reflectErr (NotEquality t t') =
raw_apply (Var $ reflErrName "NotEquality") [reflect t, reflect t']
reflectErr (TooManyArguments n) = raw_apply (Var $ reflErrName "TooManyArguments") [reflectName n]
reflectErr (CantIntroduce t) = raw_apply (Var $ reflErrName "CantIntroduce") [reflect t]
reflectErr (NoSuchVariable n) = raw_apply (Var $ reflErrName "NoSuchVariable") [reflectName n]
reflectErr (WithFnType t) = raw_apply (Var $ reflErrName "WithFnType") [reflect t]
reflectErr (CantMatch t) = raw_apply (Var $ reflErrName "CantMatch") [reflect t]
reflectErr (NoTypeDecl n) = raw_apply (Var $ reflErrName "NoTypeDecl") [reflectName n]
reflectErr (NotInjective t1 t2 t3) =
raw_apply (Var $ reflErrName "NotInjective")
[ reflect t1
, reflect t2
, reflect t3
]
reflectErr (CantResolve _ t) = raw_apply (Var $ reflErrName "CantResolve") [reflect t]
reflectErr (InvalidTCArg n t) = raw_apply (Var $ reflErrName "InvalidTCArg") [reflectName n, reflect t]
reflectErr (CantResolveAlts ss) =
raw_apply (Var $ reflErrName "CantResolveAlts")
[rawList (Var $ reflm "TTName") (map reflectName ss)]
reflectErr (IncompleteTerm t) = raw_apply (Var $ reflErrName "IncompleteTerm") [reflect t]
reflectErr (NoEliminator str t)
= raw_apply (Var $ reflErrName "NoEliminator") [RConstant (Str str),
reflect t]
reflectErr (UniverseError fc ue old new tys) =
Var $ reflErrName "UniverseError"
reflectErr ProgramLineComment = Var $ reflErrName "ProgramLineComment"
reflectErr (Inaccessible n) = raw_apply (Var $ reflErrName "Inaccessible") [reflectName n]
reflectErr (UnknownImplicit n f) = raw_apply (Var $ reflErrName "UnknownImplicit") [reflectName n, reflectName f]
reflectErr (NonCollapsiblePostulate n) = raw_apply (Var $ reflErrName "NonCollabsiblePostulate") [reflectName n]
reflectErr (AlreadyDefined n) = raw_apply (Var $ reflErrName "AlreadyDefined") [reflectName n]
reflectErr (ProofSearchFail e) = raw_apply (Var $ reflErrName "ProofSearchFail") [reflectErr e]
reflectErr (NoRewriting tm) = raw_apply (Var $ reflErrName "NoRewriting") [reflect tm]
reflectErr (ProviderError str) =
raw_apply (Var $ reflErrName "ProviderError") [RConstant (Str str)]
reflectErr (LoadingFailed str err) =
raw_apply (Var $ reflErrName "LoadingFailed") [RConstant (Str str)]
reflectErr x = raw_apply (Var (sNS (sUN "Msg") ["Errors", "Reflection", "Language"])) [RConstant . Str $ "Default reflection: " ++ show x]
reflectFC :: FC -> Raw
reflectFC fc = raw_apply (Var (reflm "FileLoc"))
[ RConstant (Str (fc_fname fc))
, raw_apply (Var pairCon) $
[intTy, intTy] ++
map (RConstant . I)
[ fst (fc_start fc)
, snd (fc_start fc)
]
, raw_apply (Var pairCon) $
[intTy, intTy] ++
map (RConstant . I)
[ fst (fc_end fc)
, snd (fc_end fc)
]
]
where intTy = RConstant (AType (ATInt ITNative))
reifyFC :: Term -> ElabD FC
reifyFC tm
| (P (DCon _ _ _) cn _, [Constant (Str fn), st, end]) <- unApply tm
, cn == reflm "FileLoc" = FC fn <$> reifyPair reifyInt reifyInt st <*> reifyPair reifyInt reifyInt end
| otherwise = fail $ "Not a source location: " ++ show tm
fromTTMaybe :: Term -> Maybe Term
fromTTMaybe (App _ (App _ (P (DCon _ _ _) (NS (UN just) _) _) ty) tm)
| just == txt "Just" = Just tm
fromTTMaybe x = Nothing
reflErrName :: String -> Name
reflErrName n = sNS (sUN n) ["Errors", "Reflection", "Language"]
reifyReportPart :: Term -> Either Err ErrorReportPart
reifyReportPart (App _ (P (DCon _ _ _) n _) (Constant (Str msg))) | n == reflm "TextPart" =
Right (TextPart msg)
reifyReportPart (App _ (P (DCon _ _ _) n _) ttn)
| n == reflm "NamePart" =
case runElab initEState (reifyTTName ttn) (initElaborator (sMN 0 "hole") initContext emptyContext Erased) of
Error e -> Left . InternalMsg $
"could not reify name term " ++
show ttn ++
" when reflecting an error:" ++ show e
OK (n', _)-> Right $ NamePart n'
reifyReportPart (App _ (P (DCon _ _ _) n _) tm)
| n == reflm "TermPart" =
case runElab initEState (reifyTT tm) (initElaborator (sMN 0 "hole") initContext emptyContext Erased) of
Error e -> Left . InternalMsg $
"could not reify reflected term " ++
show tm ++
" when reflecting an error:" ++ show e
OK (tm', _) -> Right $ TermPart tm'
reifyReportPart (App _ (P (DCon _ _ _) n _) tm)
| n == reflm "RawPart" =
case runElab initEState (reifyRaw tm) (initElaborator (sMN 0 "hole") initContext emptyContext Erased) of
Error e -> Left . InternalMsg $
"could not reify reflected raw term " ++
show tm ++
" when reflecting an error: " ++ show e
OK (tm', _) -> Right $ RawPart tm'
reifyReportPart (App _ (P (DCon _ _ _) n _) tm)
| n == reflm "SubReport" =
case unList tm of
Just xs -> do subParts <- mapM reifyReportPart xs
Right (SubReport subParts)
Nothing -> Left . InternalMsg $ "could not reify subreport " ++ show tm
reifyReportPart x = Left . InternalMsg $ "could not reify " ++ show x
reifyErasure :: Term -> ElabD RErasure
reifyErasure (P (DCon _ _ _) n _)
| n == tacN "Erased" = return RErased
| n == tacN "NotErased" = return RNotErased
reifyErasure tm = fail $ "Can't reify " ++ show tm ++ " as erasure info."
reifyPlicity :: Term -> ElabD RPlicity
reifyPlicity (P (DCon _ _ _) n _)
| n == tacN "Explicit" = return RExplicit
| n == tacN "Implicit" = return RImplicit
| n == tacN "Constraint" = return RConstraint
reifyPlicity tm = fail $ "Couldn't reify " ++ show tm ++ " as RPlicity."
reifyRFunArg :: Term -> ElabD RFunArg
reifyRFunArg (App _ (App _ (App _ (App _ (P (DCon _ _ _) n _) argN) argTy) argPl) argE)
| n == tacN "MkFunArg" = liftM4 RFunArg
(reifyTTName argN)
(reifyRaw argTy)
(reifyPlicity argPl)
(reifyErasure argE)
reifyRFunArg aTm = fail $ "Couldn't reify " ++ show aTm ++ " as an RArg."
reifyTyDecl :: Term -> ElabD RTyDecl
reifyTyDecl (App _ (App _ (App _ (P (DCon _ _ _) n _) tyN) args) ret)
| n == tacN "Declare" =
do tyN' <- reifyTTName tyN
args' <- case unList args of
Nothing -> fail $ "Couldn't reify " ++ show args ++ " as an arglist."
Just xs -> mapM reifyRFunArg xs
ret' <- reifyRaw ret
return $ RDeclare tyN' args' ret'
reifyTyDecl tm = fail $ "Couldn't reify " ++ show tm ++ " as a type declaration."
reifyFunDefn :: Term -> ElabD RFunDefn
reifyFunDefn (App _ (App _ (P _ n _) fnN) clauses)
| n == tacN "DefineFun" =
do fnN' <- reifyTTName fnN
clauses' <- case unList clauses of
Nothing -> fail $ "Couldn't reify " ++ show clauses ++ " as a clause list"
Just cs -> mapM reifyC cs
return $ RDefineFun fnN' clauses'
where reifyC :: Term -> ElabD RFunClause
reifyC (App _ (App _ (P (DCon _ _ _) n _) lhs) rhs)
| n == tacN "MkFunClause" = liftM2 RMkFunClause
(reifyRaw lhs)
(reifyRaw rhs)
reifyC (App _ (P (DCon _ _ _) n _) lhs)
| n == tacN "MkImpossibleClause" = fmap RMkImpossibleClause $ reifyRaw lhs
reifyC tm = fail $ "Couldn't reify " ++ show tm ++ " as a clause."
reifyFunDefn tm = fail $ "Couldn't reify " ++ show tm ++ " as a function declaration."
envTupleType :: Raw
envTupleType
= raw_apply (Var pairTy) [ (Var $ reflm "TTName")
, (RApp (Var $ reflm "Binder") (Var $ reflm "TT"))
]
reflectList :: Raw -> [Raw] -> Raw
reflectList ty [] = RApp (Var (sNS (sUN "Nil") ["List", "Prelude"])) ty
reflectList ty (x:xs) = RApp (RApp (RApp (Var (sNS (sUN "::") ["List", "Prelude"])) ty)
x)
(reflectList ty xs)
getArgs :: [PArg] -> Raw -> ([RFunArg], Raw)
getArgs [] r = ([], r)
getArgs (a:as) (RBind n (Pi _ ty _) sc) =
let (args, res) = getArgs as sc
erased = if InaccessibleArg `elem` argopts a then RErased else RNotErased
arg' = case a of
PImp {} -> RFunArg n ty RImplicit erased
PExp {} -> RFunArg n ty RExplicit erased
PConstraint {} -> RFunArg n ty RConstraint erased
PTacImplicit {} -> RFunArg n ty RImplicit erased
in (arg':args, res)
getArgs _ r = ([], r)
unApplyRaw :: Raw -> (Raw, [Raw])
unApplyRaw tm = ua [] tm
where
ua args (RApp f a) = ua (a:args) f
ua args t = (t, args)
buildDatatypes :: IState -> Name -> [RDatatype]
buildDatatypes ist n =
catMaybes [ mkDataType dn ti
| (dn, ti) <- lookupCtxtName n datatypes
]
where datatypes = idris_datatypes ist
ctxt = tt_ctxt ist
impls = idris_implicits ist
ctorSig params cn = do cty <- fmap forget (lookupTyExact cn ctxt)
argInfo <- lookupCtxtExact cn impls
let (args, res) = getArgs argInfo cty
return (cn, ctorArgsStatus args res params, res)
argPos n [] res = findPos n res
where findPos n app = case unApplyRaw app of
(_, argL) -> findIndex (== Var n) argL
argPos n (arg:args) res = if n == argName arg
then Nothing
else argPos n args res
ctorArgsStatus :: [RFunArg] -> Raw -> [Int] -> [RCtorArg]
ctorArgsStatus [] _ _ = []
ctorArgsStatus (arg:args) res params =
case argPos (argName arg) args res of
Nothing -> RCtorField arg : ctorArgsStatus args res params
Just i -> if i `elem` params
then RCtorParameter arg : ctorArgsStatus args res params
else RCtorField arg : ctorArgsStatus args res params
mkDataType name (TI {param_pos = params, con_names = constrs}) =
do (TyDecl (TCon _ _) ty) <- lookupDefExact name ctxt
implInfo <- lookupCtxtExact name impls
let (tcargs, tcres) = getTCArgs params implInfo (forget ty)
ctors <- mapM (ctorSig params) constrs
return $ RDatatype name tcargs tcres ctors
getTCArgs :: [Int] -> [PArg] -> Raw -> ([RTyConArg], Raw)
getTCArgs params implInfo tcTy =
let (args, res) = getArgs implInfo tcTy
in (tcArg args 0, res)
where tcArg [] _ = []
tcArg (arg:args) i | i `elem` params = RParameter arg : tcArg args (i+1)
| otherwise = RIndex arg : tcArg args (i+1)
reflectErasure :: RErasure -> Raw
reflectErasure RErased = Var (tacN "Erased")
reflectErasure RNotErased = Var (tacN "NotErased")
reflectPlicity :: RPlicity -> Raw
reflectPlicity RExplicit = Var (tacN "Explicit")
reflectPlicity RImplicit = Var (tacN "Implicit")
reflectPlicity RConstraint = Var (tacN "Constraint")
reflectArg :: RFunArg -> Raw
reflectArg (RFunArg n ty plic erasure) =
RApp (RApp (RApp (RApp (Var $ tacN "MkFunArg") (reflectName n))
(reflectRaw ty))
(reflectPlicity plic))
(reflectErasure erasure)
reflectCtorArg :: RCtorArg -> Raw
reflectCtorArg (RCtorParameter arg) = RApp (Var $ tacN "CtorParameter") (reflectArg arg)
reflectCtorArg (RCtorField arg) = RApp (Var $ tacN "CtorField") (reflectArg arg)
reflectDatatype :: RDatatype -> Raw
reflectDatatype (RDatatype tyn tyConArgs tyConRes constrs) =
raw_apply (Var $ tacN "MkDatatype") [ reflectName tyn
, rawList (Var $ tacN "TyConArg") (map reflectConArg tyConArgs)
, reflectRaw tyConRes
, rawList (rawTripleTy (Var $ reflm "TTName")
(RApp (Var (sNS (sUN "List") ["List", "Prelude"])) (Var $ tacN "CtorArg"))
(Var $ reflm "Raw"))
[ rawTriple ((Var $ reflm "TTName"),
(RApp (Var (sNS (sUN "List") ["List", "Prelude"])) (Var $ tacN "CtorArg")),
(Var $ reflm "Raw"))
(reflectName cn,
rawList (Var $ tacN "CtorArg") (map reflectCtorArg cargs),
reflectRaw cty)
| (cn, cargs, cty) <- constrs
]
]
where reflectConArg (RParameter a) =
RApp (Var $ tacN "TyConParameter") (reflectArg a)
reflectConArg (RIndex a) =
RApp (Var $ tacN "TyConIndex") (reflectArg a)