module Ideas.Common.Rewriting.Substitution
( Substitution, emptySubst, singletonSubst, dom, lookupVar
, (@@), (|->), listToSubst, composable, (@+@)
, tests
) where
import Control.Monad
import Data.List
import Data.Maybe
import Data.Monoid
import Ideas.Common.Rewriting.Term
import Ideas.Common.Utils.TestSuite
import Ideas.Common.Utils.Uniplate
import Test.QuickCheck
import qualified Data.IntMap as IM
import qualified Data.IntSet as IS
newtype Substitution = S { unS :: IM.IntMap Term }
deriving Eq
instance Monoid Substitution where
mempty = emptySubst
mappend = (@@)
infixr 5 |->
infixr 6 @@
instance Show Substitution where
show = show . unS
emptySubst :: Substitution
emptySubst = S IM.empty
singletonSubst :: Int -> Term -> Substitution
singletonSubst i a
| a == TMeta i = emptySubst
| i `elem` metaVars a = error "Substitution: cyclic"
| otherwise = S (IM.singleton i a)
listToSubst :: [(Int, Term)] -> Substitution
listToSubst = mconcat . map (uncurry singletonSubst)
(@@) :: Substitution -> Substitution -> Substitution
s1 @@ s2
| composable s1 s2 = S $ IM.map (s1 |->) (unS s2) `IM.union` unS s1
| otherwise = error "Substitution: cyclic"
composable :: Substitution -> Substitution -> Bool
composable s1 s2 =
let f = IS.unions . map metaVarSet . IM.elems . unS
in IS.null (IS.intersection (f s1) (dom s2))
lookupVar :: Int -> Substitution -> Maybe Term
lookupVar s = IM.lookup s . unS
dom :: Substitution -> IS.IntSet
dom = IM.keysSet . unS
(|->) :: Substitution -> Term -> Term
s |-> term =
case term of
TMeta i -> fromMaybe term (lookupVar i s)
_ -> descend (s |->) term
infix 6 @+@
(@+@) :: Substitution -> Substitution -> Maybe Substitution
s1 @+@ s2 = liftM S $ foldM op (unS s1) $ IM.toList $ unS s2
where
op m (i, a) =
case IM.lookup i m of
Just b
| a == b -> Just m
| otherwise -> Nothing
Nothing -> Just (IM.insert i a m)
instance Arbitrary Substitution where
arbitrary = do
n <- choose (1, 10)
ts <- vector n
let is = [0..] \\ concatMap metaVars ts
return (listToSubst (zip is ts))
tests :: TestSuite
tests = suite "Substitution"
[ useProperty "left unit" $ \s ->
mempty @@ s == s
, useProperty "right unit" $ \s ->
s @@ mempty == s
, useProperty "associative" $ \s1 s2 s3 ->
composable s1 s2 && composable (s1 @@ s2) s3
&& composable s2 s3 && composable s1 (s2 @@ s3)
==> (s1 @@ s2) @@ s3 == s1 @@ (s2 @@ s3)
, useProperty "idempotence" $ \s ->
s @@ s == s
, useProperty "idempotence/application" $ \s a ->
s |-> a == s |-> (s |-> a)
, useProperty "composition" $ \s1 s2 a ->
composable s1 s2
==> s1 |-> (s2 |-> a) == (s1 @@ s2) |-> a
]