{-# LANGUAGE GeneralizedNewtypeDeriving #-}
-----------------------------------------------------------------------------
-- Copyright 2015, Open Universiteit Nederland. This file is distributed
-- under the terms of the GNU General Public License. For more information,
-- see the file "LICENSE.txt", which is included in the distribution.
-----------------------------------------------------------------------------
-- |
-- Maintainer  :  bastiaan.heeren@ou.nl
-- Stability   :  provisional
-- Portability :  portable (depends on ghc)
--
-----------------------------------------------------------------------------
--  $Id: Boolean.hs 7524 2015-04-08 07:31:15Z bastiaan $

module Ideas.Common.Algebra.Boolean
   ( -- * Boolean algebra
     BoolValue(..), Boolean(..)
   , ands, ors, implies, equivalent
     -- * CoBoolean (matching)
   , CoBoolean(..), conjunctions, disjunctions
     -- * Monoids monoid
   , DualMonoid(..), And(..), Or(..)
   ) where

import Control.Applicative
import Ideas.Common.Algebra.Group
import Ideas.Common.Classes
import Test.QuickCheck

--------------------------------------------------------
-- Boolean algebra

-- Minimal complete definitions: (true/false, or fromBool) and isTrue/isFalse
class BoolValue a where
   true     :: a
   false    :: a
   fromBool :: Bool -> a
   isTrue   :: a -> Bool
   isFalse  :: a -> Bool
   -- default definitions
   true  = fromBool True
   false = fromBool False
   fromBool b = if b then true else false

class BoolValue a => Boolean a where
   (<&&>)     :: a -> a -> a
   (<||>)     :: a -> a -> a
   complement :: a -> a

instance BoolValue Bool where
   fromBool = id
   isTrue   = id
   isFalse  = not

instance BoolValue b => BoolValue (a -> b) where
   fromBool x = const (fromBool x)
   isTrue  = error "not implemented"
   isFalse = error "not implemented"

instance Boolean Bool where
   (<&&>)     = (&&)
   (<||>)     = (||)
   complement = not

instance Boolean b => Boolean (a -> b) where
   f <&&> g   = \x -> f x <&&> g x
   f <||> g   = \x -> f x <||> g x
   complement = (.) complement

ands :: Boolean a => [a] -> a -- or use mconcat with And monoid
ands xs | null xs   = true
        | otherwise = foldr1 (<&&>) xs

ors :: Boolean a => [a] -> a
ors xs | null xs   = false
       | otherwise = foldr1 (<||>) xs

implies :: Boolean a => a -> a -> a
implies a b = complement a <||> b

equivalent :: Boolean a => a -> a -> a
equivalent a b = (a <&&> b) <||> (complement a <&&> complement b)

--------------------------------------------------------
-- CoBoolean (matching)

class BoolValue a => CoBoolean a where
   isAnd        :: a -> Maybe (a, a)
   isOr         :: a -> Maybe (a, a)
   isComplement :: a -> Maybe a

instance CoBoolean a => CoMonoid (And a) where
   isEmpty  = isTrue . fromAnd
   isAppend = fmap (mapBoth And) . isAnd . fromAnd

instance CoBoolean a => CoMonoidZero (And a) where
   isMonoidZero = isFalse . fromAnd

instance CoBoolean a => CoMonoid (Or a) where
   isEmpty  = isFalse . fromOr
   isAppend = fmap (mapBoth Or) . isOr . fromOr

instance CoBoolean a => CoMonoidZero (Or a) where
   isMonoidZero = isTrue . fromOr

conjunctions :: CoBoolean a => a -> [a]
conjunctions = map fromAnd . associativeList . And

disjunctions :: CoBoolean a => a -> [a]
disjunctions = map fromOr . associativeList . Or

--------------------------------------------------------
-- Dual monoid for a monoid (and for or, and vice versa)

class MonoidZero a => DualMonoid a where
   (><)      :: a -> a -> a
   dualCompl :: a -> a

--------------------------------------------------------
-- And monoid

newtype And a = And {fromAnd :: a}
   deriving (Show, Eq, Ord, Arbitrary, CoArbitrary)

instance Functor And where -- could be derived
   fmap f = And . f . fromAnd

instance Applicative And where
   pure            = And
   And f <*> And a = And (f a)

instance Boolean a => Monoid (And a) where
   mempty  = pure true
   mappend = liftA2 (<&&>)

instance Boolean a => MonoidZero (And a) where
   mzero = pure false

instance Boolean a => DualMonoid (And a) where
   (><)      = liftA2 (<||>)
   dualCompl = liftA complement

--------------------------------------------------------
-- Or monoid

newtype Or a  = Or {fromOr :: a}
   deriving (Show, Eq, Ord, Arbitrary, CoArbitrary)

instance Functor Or where -- could be derived
   fmap f = Or . f . fromOr

instance Applicative Or where
   pure          = Or
   Or f <*> Or a = Or (f a)

instance Boolean a => Monoid (Or a) where
   mempty  = pure false
   mappend = liftA2 (<||>)

instance Boolean a => MonoidZero (Or a) where
   mzero = pure true

instance Boolean a => DualMonoid (Or a) where
   (><)      = liftA2 (<&&>)
   dualCompl = liftA complement