/* * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ /* ====== Dependencies ======= */ #include /* size_t */ #include "debug.h" /* assert */ #include "zstd_internal.h" /* ZSTD_malloc, ZSTD_free */ #include "pool.h" /* ====== Compiler specifics ====== */ #if defined(_MSC_VER) # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ #endif #ifdef ZSTD_MULTITHREAD #include "threading.h" /* pthread adaptation */ /* A job is a function and an opaque argument */ typedef struct POOL_job_s { POOL_function function; void *opaque; } POOL_job; struct POOL_ctx_s { ZSTD_customMem customMem; /* Keep track of the threads */ ZSTD_pthread_t* threads; size_t threadCapacity; size_t threadLimit; /* The queue is a circular buffer */ POOL_job *queue; size_t queueHead; size_t queueTail; size_t queueSize; /* The number of threads working on jobs */ size_t numThreadsBusy; /* Indicates if the queue is empty */ int queueEmpty; /* The mutex protects the queue */ ZSTD_pthread_mutex_t queueMutex; /* Condition variable for pushers to wait on when the queue is full */ ZSTD_pthread_cond_t queuePushCond; /* Condition variables for poppers to wait on when the queue is empty */ ZSTD_pthread_cond_t queuePopCond; /* Indicates if the queue is shutting down */ int shutdown; }; /* POOL_thread() : * Work thread for the thread pool. * Waits for jobs and executes them. * @returns : NULL on failure else non-null. */ static void* POOL_thread(void* opaque) { POOL_ctx* const ctx = (POOL_ctx*)opaque; if (!ctx) { return NULL; } for (;;) { /* Lock the mutex and wait for a non-empty queue or until shutdown */ ZSTD_pthread_mutex_lock(&ctx->queueMutex); while ( ctx->queueEmpty || (ctx->numThreadsBusy >= ctx->threadLimit) ) { if (ctx->shutdown) { /* even if !queueEmpty, (possible if numThreadsBusy >= threadLimit), * a few threads will be shutdown while !queueEmpty, * but enough threads will remain active to finish the queue */ ZSTD_pthread_mutex_unlock(&ctx->queueMutex); return opaque; } ZSTD_pthread_cond_wait(&ctx->queuePopCond, &ctx->queueMutex); } /* Pop a job off the queue */ { POOL_job const job = ctx->queue[ctx->queueHead]; ctx->queueHead = (ctx->queueHead + 1) % ctx->queueSize; ctx->numThreadsBusy++; ctx->queueEmpty = ctx->queueHead == ctx->queueTail; /* Unlock the mutex, signal a pusher, and run the job */ ZSTD_pthread_cond_signal(&ctx->queuePushCond); ZSTD_pthread_mutex_unlock(&ctx->queueMutex); job.function(job.opaque); /* If the intended queue size was 0, signal after finishing job */ ZSTD_pthread_mutex_lock(&ctx->queueMutex); ctx->numThreadsBusy--; if (ctx->queueSize == 1) { ZSTD_pthread_cond_signal(&ctx->queuePushCond); } ZSTD_pthread_mutex_unlock(&ctx->queueMutex); } } /* for (;;) */ assert(0); /* Unreachable */ } POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) { return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem); } POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem) { POOL_ctx* ctx; /* Check parameters */ if (!numThreads) { return NULL; } /* Allocate the context and zero initialize */ ctx = (POOL_ctx*)ZSTD_calloc(sizeof(POOL_ctx), customMem); if (!ctx) { return NULL; } /* Initialize the job queue. * It needs one extra space since one space is wasted to differentiate * empty and full queues. */ ctx->queueSize = queueSize + 1; ctx->queue = (POOL_job*)ZSTD_malloc(ctx->queueSize * sizeof(POOL_job), customMem); ctx->queueHead = 0; ctx->queueTail = 0; ctx->numThreadsBusy = 0; ctx->queueEmpty = 1; (void)ZSTD_pthread_mutex_init(&ctx->queueMutex, NULL); (void)ZSTD_pthread_cond_init(&ctx->queuePushCond, NULL); (void)ZSTD_pthread_cond_init(&ctx->queuePopCond, NULL); ctx->shutdown = 0; /* Allocate space for the thread handles */ ctx->threads = (ZSTD_pthread_t*)ZSTD_malloc(numThreads * sizeof(ZSTD_pthread_t), customMem); ctx->threadCapacity = 0; ctx->customMem = customMem; /* Check for errors */ if (!ctx->threads || !ctx->queue) { POOL_free(ctx); return NULL; } /* Initialize the threads */ { size_t i; for (i = 0; i < numThreads; ++i) { if (ZSTD_pthread_create(&ctx->threads[i], NULL, &POOL_thread, ctx)) { ctx->threadCapacity = i; POOL_free(ctx); return NULL; } } ctx->threadCapacity = numThreads; ctx->threadLimit = numThreads; } return ctx; } /*! POOL_join() : Shutdown the queue, wake any sleeping threads, and join all of the threads. */ static void POOL_join(POOL_ctx* ctx) { /* Shut down the queue */ ZSTD_pthread_mutex_lock(&ctx->queueMutex); ctx->shutdown = 1; ZSTD_pthread_mutex_unlock(&ctx->queueMutex); /* Wake up sleeping threads */ ZSTD_pthread_cond_broadcast(&ctx->queuePushCond); ZSTD_pthread_cond_broadcast(&ctx->queuePopCond); /* Join all of the threads */ { size_t i; for (i = 0; i < ctx->threadCapacity; ++i) { ZSTD_pthread_join(ctx->threads[i], NULL); /* note : could fail */ } } } void POOL_free(POOL_ctx *ctx) { if (!ctx) { return; } POOL_join(ctx); ZSTD_pthread_mutex_destroy(&ctx->queueMutex); ZSTD_pthread_cond_destroy(&ctx->queuePushCond); ZSTD_pthread_cond_destroy(&ctx->queuePopCond); ZSTD_free(ctx->queue, ctx->customMem); ZSTD_free(ctx->threads, ctx->customMem); ZSTD_free(ctx, ctx->customMem); } size_t POOL_sizeof(POOL_ctx *ctx) { if (ctx==NULL) return 0; /* supports sizeof NULL */ return sizeof(*ctx) + ctx->queueSize * sizeof(POOL_job) + ctx->threadCapacity * sizeof(ZSTD_pthread_t); } /* @return : 0 on success, 1 on error */ static int POOL_resize_internal(POOL_ctx* ctx, size_t numThreads) { if (numThreads <= ctx->threadCapacity) { if (!numThreads) return 1; ctx->threadLimit = numThreads; return 0; } /* numThreads > threadCapacity */ { ZSTD_pthread_t* const threadPool = (ZSTD_pthread_t*)ZSTD_malloc(numThreads * sizeof(ZSTD_pthread_t), ctx->customMem); if (!threadPool) return 1; /* replace existing thread pool */ memcpy(threadPool, ctx->threads, ctx->threadCapacity * sizeof(*threadPool)); ZSTD_free(ctx->threads, ctx->customMem); ctx->threads = threadPool; /* Initialize additional threads */ { size_t threadId; for (threadId = ctx->threadCapacity; threadId < numThreads; ++threadId) { if (ZSTD_pthread_create(&threadPool[threadId], NULL, &POOL_thread, ctx)) { ctx->threadCapacity = threadId; return 1; } } } } /* successfully expanded */ ctx->threadCapacity = numThreads; ctx->threadLimit = numThreads; return 0; } /* @return : 0 on success, 1 on error */ int POOL_resize(POOL_ctx* ctx, size_t numThreads) { int result; if (ctx==NULL) return 1; ZSTD_pthread_mutex_lock(&ctx->queueMutex); result = POOL_resize_internal(ctx, numThreads); ZSTD_pthread_cond_broadcast(&ctx->queuePopCond); ZSTD_pthread_mutex_unlock(&ctx->queueMutex); return result; } /** * Returns 1 if the queue is full and 0 otherwise. * * When queueSize is 1 (pool was created with an intended queueSize of 0), * then a queue is empty if there is a thread free _and_ no job is waiting. */ static int isQueueFull(POOL_ctx const* ctx) { if (ctx->queueSize > 1) { return ctx->queueHead == ((ctx->queueTail + 1) % ctx->queueSize); } else { return (ctx->numThreadsBusy == ctx->threadLimit) || !ctx->queueEmpty; } } static void POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque) { POOL_job const job = {function, opaque}; assert(ctx != NULL); if (ctx->shutdown) return; ctx->queueEmpty = 0; ctx->queue[ctx->queueTail] = job; ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize; ZSTD_pthread_cond_signal(&ctx->queuePopCond); } void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) { assert(ctx != NULL); ZSTD_pthread_mutex_lock(&ctx->queueMutex); /* Wait until there is space in the queue for the new job */ while (isQueueFull(ctx) && (!ctx->shutdown)) { ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex); } POOL_add_internal(ctx, function, opaque); ZSTD_pthread_mutex_unlock(&ctx->queueMutex); } int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) { assert(ctx != NULL); ZSTD_pthread_mutex_lock(&ctx->queueMutex); if (isQueueFull(ctx)) { ZSTD_pthread_mutex_unlock(&ctx->queueMutex); return 0; } POOL_add_internal(ctx, function, opaque); ZSTD_pthread_mutex_unlock(&ctx->queueMutex); return 1; } #else /* ZSTD_MULTITHREAD not defined */ /* ========================== */ /* No multi-threading support */ /* ========================== */ /* We don't need any data, but if it is empty, malloc() might return NULL. */ struct POOL_ctx_s { int dummy; }; static POOL_ctx g_ctx; POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) { return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem); } POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem) { (void)numThreads; (void)queueSize; (void)customMem; return &g_ctx; } void POOL_free(POOL_ctx* ctx) { assert(!ctx || ctx == &g_ctx); (void)ctx; } int POOL_resize(POOL_ctx* ctx, size_t numThreads) { (void)ctx; (void)numThreads; return 0; } void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) { (void)ctx; function(opaque); } int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) { (void)ctx; function(opaque); return 1; } size_t POOL_sizeof(POOL_ctx* ctx) { if (ctx==NULL) return 0; /* supports sizeof NULL */ assert(ctx == &g_ctx); return sizeof(*ctx); } #endif /* ZSTD_MULTITHREAD */