
Under consideration for publication in the ACM Haskell Symposium. Comments are welcome; please identify this version by the
words consul mobilizations Evangeline heartstrings.

Hoopl: A Modular, Reusable Library for
Dataflow Analysis and Transformation

Norman Ramsey
Tufts University
nr@cs.tufts.edu

Jõao Dias
Tufts University

dias@cs.tufts.edu

Simon Peyton Jones
Microsoft Research

simonpj@microsoft.com

Abstract
Dataflow analysis and transformation of control-flow graphs is per-
vasive in optimizing compilers, but it is typically tightly interwo-
ven with the details of aparticular compiler. We describe Hoopl,
a reusable Haskell library that makes it unusually easy to define
new analyses and transformations foranycompiler. Hoopl’s inter-
face is modular and polymorphic, and it offers unusually strong
static guarantees. The implementation encapsulates state-of-the-art
algorithms (interleaved analysis and rewriting, dynamic error isola-
tion), and it cleanly separates their tricky elements so that they can
be understood independently.

1. Introduction
A mature optimizing compiler for an imperative language includes
many analyses, the results of which justify the optimizer’s code-
improving transformations. Many of the most important analyses
and transformations—constant propagation, live-variable analysis,
inlining, sinking of loads, and so on—should be regarded as par-
ticular cases of a single general problem:dataflow analysis and
optimization. Dataflow analysis is over thirty years old, but a re-
cent, seminal paper by Lerner, Grove, and Chambers (2002) goes
further, describing a powerful but subtle way tointerleaveanalysis
and transformation so that each piggybacks on the other.

Because optimizations based on dataflow analysis share a common
intellectual framework, and because that framework is subtle, it
it tempting to try to build a single reusable library that embodies
the subtle ideas, while making it easy for clients to instantiate the
library for different situations. Although such libraries exist, as we
discuss in Section 6, they have complex APIs and implementations,
and none implements the Lerner/Grove/Chambers technique.

In this paper we present Hoopl (short for “higher-order optimiza-
tion library”), a new Haskell library for dataflow analysis and opti-
mization. It has the following distinctive characteristics:

• Hoopl is purely functional. Although pure functional languages
are not obviously suited to writing standard algorithms that ma-
nipulate control-flow graphs, the pure functional code is actu-
ally easier to write, and far easier to write correctly, than code
that is mostly functional but uses a mutable representation of
graphs (Ramsey and Dias 2005). When analysis and rewriting
are interleaved, so that rewriting must be donespeculatively,
without knowing whether the result of the rewrite will be re-
tained or discarded, the benefit of a purely functional style is
intensified.

• Hoopl is polymorphic. Just as a list library is polymorphic in the
list elements, so is Hoopl polymorphic, both in the nodes that
inhabit graphs and in the dataflow facts that analyses compute
over these graphs (Section 4).

• The paper by Lerner, Grove, and Chambers is inspiring but ab-
stract. We articulate their ideas in a concrete, simple API, which
hides a subtle implementation (Sections 3 and 4). You provide a
representation for assertions, a transfer function that transforms
assertions across a node, and a rewrite function that uses an
assertion to justify rewriting a node. Hoopl “lifts” these node-
level functions to work over control-flow graphs, solves recur-
sion equations, and interleaves rewriting with analysis. Design-
ing good APIs is surprisingly hard; we have been through over
a dozen significantly different iterations, and we offer our API
as a contribution.

• Because the client can perform very local reasoning (“y is live
beforex:=y+2”), analyses and transformations built on Hoopl
are small, simple, and easy to get right. Moreover, Hoopl helps
you write correct optimizations: it statically rules out transfor-
mations that violate invariants of the control-flow graph (Sec-
tions 3 and 4.3), and dynamically it can help find the first trans-
formation that introduces a fault in a test program (Section 5.4).

• Hoopl implements subtle algorithms, including (a) interleaved
analysis and rewriting, (b) speculative rewriting, (c) computing
fixed points, and (d) dynamic fault isolation. Previous imple-
mentations of these algorithms—including three of our own—
are complicated and hard to understand, because the tricky
pieces are implemented all together, inseparably. In this paper,
each tricky piece is handled in just one place, separate from all
the others (Section 5). We emphasize this implementation as an
object of interest in its own right.

Our work bridges the gap between abstract, theoretical presenta-
tions and actual compilers. Hoopl is available fromhttp://ghc.
cs.tufts.edu/hoopl and also from Hackage (version 3.8.3.0).
One of Hoopl’s clients is the Glasgow Haskell Compiler, which
uses Hoopl to optimize imperative code in GHC’s back end.

The API for Hoopl requires relatively sophisticated aspects of
Haskell’s type system, such as higher-rank polymorphism, GADTs,
and type functions. Hoopl therefore may also serve as a case study
in the utility of these features.

2. Dataflow analysis & transformation by example
A control-flow graph, perhaps representing the body of a proce-
dure, is a collection ofbasic blocks—or just “blocks.” Each block is
a sequence of instructions, beginning with a label and ending with a
control-transfer instruction that branches to other blocks. The goal
of dataflow optimization is to compute validassertions(or dataflow
facts), then use those assertions to justify code-improving transfor-
mations (orrewrites) on acontrol-flow graph.

As a concrete example, we consider constant propagation with
constant folding. On the left we have a basic block; in the middle
we have facts that hold between statements (ornodes) in the block;

1 2010/6/13

http://ghc.cs.tufts.edu/hoopl
http://ghc.cs.tufts.edu/hoopl

and at the right we have the result of transforming the block based
on the assertions:

Before Facts After
------------{}-------------

x := 3+4 x := 7
----------{x=7}------------

z := x>5 z := True
-------{x=7, z=True}-------

if z goto L1
then goto L1
else goto L2

Constant propagation works from top to bottom. We start with the
empty fact. Given the empty fact and the nodex:=3+4 can we make
a (constant-folding) transformation? Yes: we can replace the node
with x:=7. Now, given this transformed node, and the original fact,
what fact flows out of the bottom of the transformed node? The fact
{x=7}. Given the fact{x=7} and the nodez:=x>5, can we make
a transformation? Yes: constant propagation can replace the node
with z:=7>5. Now, can we make another transformation? Yes: con-
stant folding can replace the node withz:=True. The process con-
tinues to the end of the block, where we can replace the conditional
branch with an unconditional one,goto L1.

The example above is simple because the program has only
straightline code; when programs have loops, dataflow analysis
gets more complicated. For example, consider the following graph,
where we assumeL1 is the entry point:

L1: x=3; y=4; if z then goto L2 else goto L3
L2: x=7; goto L3
L3: ...

Because control flows toL3 from two places (L1 and L2), we
must join the facts coming from those two places. All paths toL3
produce the facty=4, so we can conclude that this fact holds atL3.
But depending on the the path toL3, x may have different values,
so we conclude “x=⊤”, meaning that there is no single value held
by x at L3. The final result of joining the dataflow facts that flow
to L3 is the new factx=⊤∧ y=4 ∧ z=⊤.

Forwards and backwards. Constant propagation worksforwards,
and a fact is often an assertion about the program state (such
as “variablex holds value7”). Some useful analyses workback-
wards. A prime example is live-variable analysis, where a fact takes
the form “variablex is live” and is an assertion about thecontinu-
ation of a program point. For example, the fact “x is live” at a pro-
gram point P is an assertion thatx is used on some program path
starting at P. The accompanying transformation is called dead-code
elimination; if x is not live, this transformation replaces the node
x:=e with a no-op.

Interleaved transformation and analysis. Our first examplein-
terleavestransformation and analysis. Interleaving makes it far eas-
ier to write effective analyses. If, instead, wefirst analyzed the
block andthentransformed it, the analysis would have to “predict”
the transformations. For example, given the incoming fact{x=7}
and the instructionz:=x>5, a pure analysis could produce the out-
going fact{x=7, z=True} by simplifying x>5 to True. But the
subsequent transformation must performexactly the same simpli-
fication when it transforms the instruction toz:=True! If instead
we first rewrite the node toz:=True, andthenapply the transfer
function to the new node, the transfer function becomes laughably
simple: it merely has to see if the right hand side is a constant (you
can see actual code in Section 4.6).

Another example is the interleaving of liveness analysis and dead-
code elimination. As mentioned in Section 1, it is sufficient for the

analysis to say “y is live beforex:=y+2”. It is not necessary to
have the more complex rule “ifx is live afterx:=y+2 theny is live
before it,” because ifx is not live after x:=y+2, the assignment
x:=y+2 will be eliminated. If there are a number of interacting
analyses and/or transformations, the benefit of interleaving them
is even more compelling; for more substantial examples, consult
Lerner, Grove, and Chambers (2002).

3. Representing control-flow graphs
Hoopl is a library that makes it easy to define dataflow analyses, and
transformations driven by these analyses, on control-flow graphs.
Graphs are composed from smaller units, which we discuss from
the bottom up:

• A nodeis defined by Hoopl’s client; Hoopl knows nothing about
the representation of nodes (Section 3.2).

• A basicblock is a sequence of nodes (Section 3.3).

• Control-flowedgesconnect nodes (Section 3.4).

• A graph is an arbitrarily complicated control-flow graph, com-
posed from basic blocks (Section 3.5).

3.1 Shapes: Open and closed

Nodes, blocks, and graphs share important properties in common.
In particular, each isopen or closed on entryandopen or closed
on exit. An openpoint is one at which control may implicitly “fall
through;” to transfer control at aclosedpoint requires an explicit
control-transfer instruction to a named label. For example,

• A shift-left instruction is open on entry (because control can
fall into it from the preceding instruction), and open on exit
(because control falls through to the next instruction).

• An unconditional branch is open on entry, but closed on exit
(because control cannot fall through to the next instruction).

• A label is closed on entry (because in Hoopl we do not allow
control to fall through into a branch target), but open on exit.

• A function call should be closed on exit, because control can
flow from a call site to multiple points: for example, a return
continuation or an exception handler. (And after optimization,
distinct call sites may share a return continuation.)

These examples concern nodes, but the same classification applies
to blocks and graphs. For example the block

x:=7; y:=x+2; goto L

is open on entry and closed on exit. This is the block’sshape,
which we often abbreviate “open/closed;” we may refer to an
“open/closed block.”

The shape of a thing determines that thing’s control-flow properties.
In particular, whenever E is a node, block, or graph,

• If E is open on entry, it has a unique predecessor; if it is closed,
it may have arbitrarily many predecessors—or none.

• If E is open on exit, it has a unique successor; if it is closed, it
may have arbitrarily many successors—or none.

3.2 Nodes

The primitive constituents of a Hoopl control-flow graph arenodes,
which are defined by the client. Typically, a node might represent a
machine instruction, such as an assignment, a call, or a conditional
branch. But Hoopl’s graph representation ispolymorphic in the
node type, so each client can define nodes as it likes. Because they
contain nodes defined by the client, graphs can include arbitrary

2 2010/6/13

data Node e x where
Label :: Label -> Node C O
Assign :: Var -> Expr -> Node O O
Store :: Expr -> Expr -> Node O O
Branch :: Label -> Node O C
CondBranch :: Expr -> Label -> Label -> Node O C
... more constructors ...

Figure 1. A typical node type as it might be defined by a client

client-specified data, including (say) method calls, C statements,
stack maps, or whatever.

Hoopl knowsat compile timewhether a node is open or closed on
entry and exit: the type of a node has kind*->*->*, where the two
type parameters are type-level flags, one for entry and one for exit.
Such a type parameter may be instantiated only with typeO (for
open) or typeC (for closed).

As an example, Figure 1 shows a typical node type as it might be
written by one of Hoopl’s clients. The type parameters are written
e andx, for entry and exit respectively. The type is a generalized
algebraic data type; the syntax gives the type of each constructor.
For example, constructorLabel takes aLabel and returns a node
of typeNode C O, where the “C” says “closed on entry” and the “O”
says “open on exit”. The typesLabel, O, and C are defined by
Hoopl (Figure 2). As another example, constructorAssign takes
a variable and an expression, and it returns aNode open on both
entry and exit; constructorStore is similar. TypesVar andExpr
are private to the client, and Hoopl knows nothing of them. Finally,
control-transfer nodesBranch andCondBranch are open on entry
and closed on exit.

Nodes closed on entry are the only targets of control transfers;
nodes open on entry and exit never perform control transfers; and
nodes closed on exit always perform control transfers1. Because of
the position each type of node occupies in a basic block, we often
call themfirst, middle, andlast nodes respectively.

3.3 Blocks

Hoopl combines the client’s nodes into blocks and graphs, which,
unlike the nodes, are defined by Hoopl (Figure 2). ABlock is
parameterized over the node typen as well as over the same flag
types that make it open or closed at entry and exit.

The BFirst, BMiddle, andBLast constructors create one-node
blocks. Each of these constructors is polymorphic in the node’s
representationbut monomorphic in itsshape. Why not use a single
constructor of typen e x -> Block n e x, which would be poly-
morphic in a node’s representationandshape? Because by making
the shape known statically, we simplify the implementation of anal-
ysis and transformation in Section 5.

The BCat constructor concatenates blocks in sequence. It makes
sense to concatenate blocks only when control can fall through
from the first to the second; therefore, two blocks may be concate-
nated only if each block is open at the point of concatenation. This
restriction is enforced by the type ofBCat, whose first argument
must be open on exit, and whose second argument must be open
on entry. It is statically impossible, for example, to concatenate a
Branch immediately before anAssign. Indeed, theBlock type
statically guarantees that any closed/closedBlock—which com-

1 To obey these invariants, a node for a conditional-branch instruction,
which typically either transfers controlor falls through, must be represented
as a two-target conditional branch, with the fall-through path in a separate
block. This representation is standard (Appel 1998), and itcosts nothing in
practice: such code is easily sequentialized without superfluous branches.

data O -- Open
data C -- Closed

data Block n e x where
BFirst :: n C O -> Block n C O
BMiddle :: n O O -> Block n O O
BLast :: n O C -> Block n O C
BCat :: Block n e O -> Block n O x -> Block n e x

data Graph n e x where
GNil :: Graph n O O
GUnit :: Block n O O -> Graph n O O
GMany :: MaybeO e (Block n O C)

-> LabelMap (Block n C C)
-> MaybeO x (Block n C O)
-> Graph n e x

data MaybeO ex t where
JustO :: t -> MaybeO O t
NothingO :: MaybeO C t

newtype Label -- abstract type

class NonLocal n where
entryLabel :: n C x -> Label
successors :: n e C -> [Label]

Figure 2. The block and graph types defined by Hoopl

piler writers normally call a “basic block”—consists of exactly one
first node (such asLabel in Figure 1), followed by zero or more
middle nodes (Assign or Store), and terminated with exactly one
last node (Branch orCondBranch). Using GADTs to enforce these
invariants is one of Hoopl’s innovations.

3.4 Control-flow edges and program points

In a block, a control-flow edge is implicit in every application of
the BCat constructor. An implicit edge originates in a first node
or a middle node and flows to a middle node or a last node.Ex-
plicit edges between blocks are represented by the client; an ex-
plicit edge originates in a last node and flows to a (labelled) first
node. Hoopl discovers explicit edges by using thesuccessors and
entryLabel functions of theNonLocal class. Any edge, whether
implicit or explicit, is considered a program point, and an analysis
written using Hoopl computes a dataflow fact at each such point.

3.5 Graphs

Hoopl composes blocks into graphs, which are also defined in
Figure 2. LikeBlock, the data typeGraph is parameterized over
both nodesn and its open/closed shape (e and x). It has three
constructors. The first two deal with the base cases of open/open
graphs: an empty graph is represented byGNil while a single-block
graph is represented byGUnit.

More general graphs are represented byGMany, which has three
fields: an optional entry sequence, a body, and an optional exit
sequence.

• If the graph is open on entry, it contains anentry sequenceof
typeBlock n O C. We could represent this sequence as a value
of type Maybe (Block n O C), but we can do better: a value
of Maybe type requires adynamictest, but we knowstatically,
at compile time, that the sequence is present if and only if the
graph is open on entry. We express our compile-time knowledge
by using the typeMaybeO e (Block n O C), a type-indexed
version ofMaybe which is also defined in Figure 2: the type

3 2010/6/13

MaybeO O a is isomorphic toa, while the typeMaybeO C a is
isomorphic to().

• The bodyof the graph is a collection of closed/closed blocks.
To facilitate traversal of the graph, we represent a body as a
finite map from label to block.

• The exit sequenceis dual to the entry sequence, and like the
entry sequence, its presence or absence is deducible from the
static type of the graph.

Graphs can be spliced together nicely; the cost is logarithmic in the
number of closed/closed blocks. Unlike blocks, two graphs may be
spliced together not only when they are both open at splice point
but also when they are both closed—and not in the other two cases:

gSplice :: Graph n e a -> Graph n a x -> Graph n e x
gSplice GNil g2 = g2
gSplice g1 GNil = g1

gSplice (GUnit b1) (GUnit b2) = GUnit (b1 ‘BCat‘ b2)

gSplice (GUnit b) (GMany (JustO e) bs x)
= GMany (JustO (b ‘BCat‘ e)) bs x

gSplice (GMany e bs (JustO x)) (GUnit b2)
= GMany e bs (JustO (x ‘BCat‘ b2))

gSplice (GMany e1 bs1 (JustO x1)) (GMany (JustO e2) bs2 x2)
= GMany e1 (bs1 ‘mapUnion‘ (b ‘addBlock‘ bs2)) x2
where b = x1 ‘BCat‘ e2

gSplice (GMany e1 bs1 NothingO) (GMany NothingO bs2 x2)
= GMany e1 (bs1 ‘mapUnion‘ bs2) x2

This definition illustrates the power of GADTs: the pattern match-
ing is exhaustive, and all the open/closed invariants are stati-
cally checked. For example, consider the second-last equation
for gSplice. Since the exit sequence of the first argument is
JustO x1, we know that type parametera is O, and hence the entry
sequence of the second argument must beJustO e2. Moreover,
block x1 must be closed/open, and blocke2 must be open/closed.
We can therefore concatenate them withBCat to produce a closed/closed
block, which is added to the body of the result.

The representation ofGraphs is exposed to Hoopl’s clients. We have
carefully crafted the types so that ifBCat is considered as an asso-
ciative operator, every graph has a unique representation. To guar-
antee uniqueness,GUnit is restricted to open/open blocks. IfGUnit
were more polymorphic, there would be more than one way to rep-
resent some graphs, and it wouldn’t be obvious to a client which
representation to choose—or if the choice made a difference.

3.6 Labels and successors

Although Hoopl is polymorphic in the type of nodes, it still needs to
know how a node may transfer control from one block to another.
Hoopl also needs to know whatLabel is on the first node in a
block. If Hoopl is polymorphic in the node type, how can it know
these things? Hoopl requires the client to make the node type
an instance of Hoopl’sNonLocal type class, which is defined in
Figure 2. TheentryLabelmethod takes a first node (one closed on
entry, Section 3.2) and returns itsLabel; thesuccessors method
takes a last node (closed on exit) and returns theLabels to which
it can transfer control. A middle node, which is open on both entry
and exit, transfers control only locally, to its successor within a
basic block, so no corresponding interrogation function is needed.

In Figure 1, the client’s instance declaration forNode would be

instance NonLocal Node where
entryLabel (Label l) = l
successors (Branch b) = [b]
successors (CondBranch e b1 b2) = [b1, b2]

Specified Implemented
Part of optimizer by by How many

Control-flow graphs US US One
Nodes in a
control-flow graph

YOU YOU One type per
intermediate language

Dataflow factF YOU YOU One type per logic
Lattice operations US YOU One set per logic

Transfer functions US YOU One per analysis
Rewrite functions US YOU One per transformation

Solve-and-rewrite
functions

US US Two (forward, backward)

Table 3. Parts of an optimizer built with Hoopl

Again, the pattern matching for both functions is exhaustive, and
the compiler statically checks this fact. Here,entryLabel cannot
be applied to anAssign or Branch node, and any attempt to define
a case forAssign or Branch would result in a type error.

While the client provides this information about nodes, it is con-
venient for Hoopl to get the same information about blocks. Inter-
nally, Hoopl uses this instance declaration for theBlock type:

instance NonLocal n => NonLocal (Block n) where
entryLabel (BFirst n) = entryLabel n
entryLabel (BCat b _) = entryLabel b
successors (BLast n) = successors n
successors (BCat _ b) = successors b

Because the functionsentryLabel andsuccessors are used to
track control flowwithin a graph, Hoopl does not need to ask for the
entry label or successors of aGraph itself. Indeed,Graph cannot
be an instance ofNonLocal, because even if aGraph is closed on
entry, it need not have a unique entry label.

4. Using Hoopl to analyze and transform graphs
Now that we have graphs, how do we optimize them? Hoopl makes
it easy to build a new dataflow analysis and optimization. A client
must supply the following pieces:

• A node type(Section 3.2). Hoopl supplies theBlock andGraph
types that let the client build control-flow graphs out of nodes.

• A data type of factsand some operations over those facts (Sec-
tion 4.1). Each analysis uses facts that are specific to that par-
ticular analysis, which Hoopl accommodates by being polymor-
phic in the fact type.

• A transfer functionthat takes a node and returns afact trans-
former, which takes a fact flowing into the node and returns the
transformed fact that flows out of the node (Section 4.2).

• A rewrite functionthat takes a node and an input fact, and which
returns eitherNothing or Just (FwdRew g rw), whereg is
a graph that should replace the node andrw is a new rewrite
function (Sections 4.3 and 4.4). The ability to replace anodeby
agraph is crucial for many code-improving transformations.

These requirements are summarized in Table 3. Because facts,
transfer functions, and rewrite functions work closely together, we
represent their combination as a single record of typeFwdPass
(Figure 4).

Given a node typen and aFwdPass, a client can ask Hoopl to
analyze and rewrite a graph. Hoopl provides a fully polymorphic
interface, but for purposes of exposition, we present a function that
is specialized to a closed/closed graph:

4 2010/6/13

analyzeAndRewriteFwdBody
:: (FuelMonad m -- State for rewriting

, NonLocal n) -- Extract non-local flow edges
=> FwdPass m n f -- Lattice, transfer, rewrite
-> [Label] -- Entry point(s)
-> Graph n C C -- Input graph
-> FactBase f -- Input fact(s)
-> m (Graph n C C -- Result graph

, FactBase f) -- ... and its facts

Given aFwdPass and a list of entry points, the analyze-and-rewrite
function transforms a graph into an optimized graph. As its type
shows, this function is polymorphic in the types of nodesn and
factsf; these types are determined by the client. The type of the
monadm is also determined by the client, but it must meet the
constraints implied byFuelMonad, as described in Section 5.4.

As well as taking and returning a graph, the function also takes
input facts (theFactBase) and produces output facts. AFactBase
is simply a finite mapping fromLabel to facts; if aLabel is not
in the domain of theFactBase, its fact is the bottom element
of the lattice. For example, in our constant-propagation example
from Section 2, if the graph represents the body of a procedure
with parametersx, y, z, we would map the entryLabel to a fact
x=⊤ ∧ y=⊤ ∧ z=⊤, to specify that the procedure’s parameters are
not known to be constants.

The client’s model of howanalyzeAndRewriteFwdBody works is
as follows: Hoopl walks forward over each block in the graph. At
each node, Hoopl applies the rewrite function to the node and the
incoming fact. If the rewrite function returnsNothing, the node is
retained as part of the output graph, the transfer function is used
to compute the downstream fact, and Hoopl moves on to the next
node. But if the rewrite function returnsJust (FwdRew g rw),
indicating that it wants to rewrite the node to the replacement
graphg, then Hoopl recursively analyzes and rewritesg, using the
new rewrite functionrw, before moving on to the next node. A node
following a rewritten node seesup-to-datefacts; that is, its input
fact is computed by analyzing the replacement graph.

Below we flesh out the interface toanalyzeAndRewriteFwdBody,
leaving the implementation for Section 5.

4.1 Dataflow lattices

For each analysis or transformation, the client must define a type
of dataflow facts. A dataflow fact often represents an assertion
about a program point, but in general, dataflow analysis establishes
properties ofpaths:

• An assertion about all pathsto a program point is established
by a forward analysis. For example the assertion “x = 3” at
point P claims that variablex holds value3 at P, regardless of
the path by which P is reached.

• An assertion about all pathsfroma program point is established
by abackward analysis. For example, the assertion “x is dead”
at point P claims that no path from P uses variablex.

A set of dataflow facts must form a lattice, and Hoopl must know
(a) the bottom element of the lattice and (b) how to take the least
upper bound (join) of two elements. To ensure that analysis termi-
nates, it is enough if every fact has a finite number of distinct facts
above it, so that repeated joins eventually reach a fixed point.

In practice, joins are computed at labels. Iffold is the fact currently
associated with a labelL, and if a transfer function propagates
a new factfnew into label L, the dataflow engine replacesfold

with the joinfold ⊔ fnew . Furthermore, the dataflow engine wants
to know if fold ⊔ fnew = fold , because if not, the analysis has not
reached a fixed point.

data FwdPass m n f
= FwdPass { fp_lattice :: DataflowLattice f

, fp_transfer :: FwdTransfer n f
, fp_rewrite :: FwdRewrite m n f }

------- Lattice ----------
data DataflowLattice a = DataflowLattice
{ fact_bot :: a
, fact_join :: OldFact a -> NewFact a

-> (ChangeFlag, a) }

data ChangeFlag = NoChange | SomeChange
newtype OldFact a = OldFact a
newtype NewFact a = NewFact a

------- Transfers ----------
newtype FwdTransfer n f -- abstract type
mkFTransfer
:: (forall e x . n e x -> f -> Fact x f)
-> FwdTransfer n f

------- Rewrites ----------
newtype FwdRewrite m n f -- abstract type
mkFRewrite
:: (forall e x . n e x

-> f -> m (Maybe (FwdRew m n f e x)))
-> FwdRewrite m n f

data FwdRew m n f e x
= FwdRew (Graph n e x) (FwdRewrite m n f)

------- Fact-like things, aka "fact(s)" -----
type family Fact x f :: *
type instance Fact O f = f
type instance Fact C f = FactBase f

------- FactBase -------
type FactBase f = LabelMap f
-- A finite mapping from Labels to facts f

------- Optimization Fuel ----
type Fuel = Int
class Monad m => FuelMonad m where
getFuel :: m Fuel
setFuel :: Fuel -> m ()

Figure 4. Hoopl API data types

The bottom element and join operation of a lattice of facts of typef
are stored in a value of typeDataflowLattice f (Figure 4). As
noted in the previous paragraph, Hoopl needs to know when the
result of a join is equal to the old fact. Because this informa-
tion can often be computed cheaply together with the join, Hoopl
does not require a separate equality test on facts (which might
be expensive). Instead, Hoopl requires thatfact_join return a
ChangeFlag as well as the least upper bound. TheChangeFlag
should beNoChange if the result is the same as the old fact, and
SomeChange if the result differs.

To help clients create lattices and join functions, Hoopl includes
functions and constructors that can extend a typea with top and
bottom elements. In this paper, we use only typeWithTop, which
comes with value constructors that have these types:

PElem :: a -> WithTop a
Top :: WithTop a

5 2010/6/13

Hoopl provides combinators which make it easier to create join
functions that useTop. The most useful isextendJoinDomain:

extendJoinDomain
:: (OldFact a -> NewFact a -> (ChangeFlag, WithTop a))
-> (OldFact (WithTop a) -> NewFact (WithTop a)

-> (ChangeFlag, WithTop a))

A client can write a join function thatconsumesonly facts of typea,
but may produceTop (as well as a fact of typea)—as in the ex-
ample of Figure 5 below. CallingextendJoinDomain extends the
client’s function to a proper join function on the typeWithTop a,
andextendJoinDomain makes sure that joins involvingTop obey
the appropriate algebraic laws.

Hoopl also provides a value constructorBot and type constructors
WithBot andWithTopAndBot, along with similar functions. Con-
structorsTop andBot are polymorphic, so for example,Top also
has typeWithTopAndBot a.

4.2 The transfer function

A forward transfer function is presented with the dataflow fact com-
ing into a node, and it computes dataflow fact(s) on the node’s out-
going edge(s). In a forward analysis, the dataflow engine starts with
the fact at the beginning of a block and applies the transfer function
to successive nodes in that block until eventually the transfer func-
tion for the last node computes the facts that are propagated to the
block’s successors. For example, consider doing constant propaga-
tion (Section 2) on the following graph, with entry atL1:

L1: x=3; goto L2
L2: y=x+4; x=x-1;

if x>0 then goto L2 else return

Forward analysis starts with the bottom fact{} at every label.
AnalyzingL1 propagates this fact forward, by applying the transfer
function successively to the nodes ofL1, emerging with the fact
{x=3} for L2. This new fact is joined with the existing (bottom)
fact for L2. Now the analysis propagatesL2’s fact forward, again
using the transfer function, this time emerging with a new fact
{x=2, y=7} for L2. Again, the new fact is joined with the existing
fact forL2, and the process is iterated until the facts for each label
reach a fixed point.

A transfer function has an unusual sort of type: not quite a depen-
dent type, but not a bog-standard polymorphic type either. The re-
sult type of the transfer function isindexedby the shape (i.e., the
type) of the node argument: If the node is open on exit, the transfer
function produces a single fact. But if the node isclosedon exit,
the transfer function produces a collection of (Label,fact) pairs,
one for each outgoing edge. The indexing is expressed by Haskell’s
(recently added)indexed type families. The relevant part of Hoopl’s
interface is given in Figure 4. A forward transfer function supplied
by a client, which would be passed tomkFTransfer, is typically a
function polymorphic ine andx. It takes a node of typen e x and it
returns afact transformerof typef -> Fact x f. Type constructor
Fact should be thought of as a type-level function: its signature is
given in thetype family declaration, while its definition is given
by twotype instance declarations. The first declaration says that
aFact O f, which comes out of a nodeopenon exit, is just a factf.
The second declaration says that aFact C f, which comes out of a
nodeclosedon exit, is a mapping fromLabel to facts.

4.3 The rewrite function

We compute dataflow facts in order to enable code-improving
transformations. In our constant-propagation example, the dataflow
facts may enable us to simplify an expression by performing con-
stant folding, or to turn a conditional branch into an unconditional

one. Similarly, a liveness analysis may allow us to replace a dead
assignment with a no-op.

A FwdPass therefore includes arewrite function, whose type,
FwdRewrite, is abstract (Figure 4). A programmer creating a
rewrite function chooses the type of a noden and a dataflow factf.
A rewrite function might also want access to fresh names (e.g.,
to label new blocks) or to other state (e.g., a mapping indicating
which loops a block is a part of). So that a rewrite function may
have access to such state, Hoopl requires that a programmer cre-
ating a rewrite function also choose a monadm. The programmer
may write code that works with any monad, may create a monad
just for the client, or may use a monad supplied by Hoopl.

When these choices are made, the most direct way to create a
rewrite function is to call the functionmkFRewrite in Figure 4.
The client supplies a function that is specialized to a particular
node, fact, and (possibly) monad, but is polymorphic in theshape
of the node to be rewritten. The function, which we will callr,
takes a node and a fact and returns a monadic computation, but
what is the result of that computation? One might expect that the
result should be a new node, but that is not enough: in general, it
must be possible for rewriting to result in a graph. For example,
we might want to remove a node by returning the empty graph, or
more ambitiously, we might want to replace a high-level operation
with a tree of conditional branches or a loop, which would entail
returning a graph containing new blocks with internal control flow.

It must also be possible for a rewrite function to decide to do
nothing. The result of the monadic computation returned byr
may therefore beNothing, indicating that the node should not be
rewritten, orJust (FwdRew g rw), indicating that the node should
be replaced withg: the replacement graph. The additional valuerw

tells Hoopl whether and how the replacement graphg should be
analyzed and rewritten further; we explainrw in Section 4.4.

The type ofmkFRewrite in Figure 4 guarantees that the replace-
ment graphg has thesameopen/closed shape as the node being
rewritten. For example, a branch instruction can be replaced only
by a graph closed on exit.

Rewrite functions are potentially more plentiful than transfer func-
tions, because a single dataflow fact might justify more than one
kind of rewrite. Hoopl makes it easy for a client to combine multi-
ple rewrite functions that use the same fact:

thenFwdRw :: Monad m
=> FwdRewrite m n f
-> FwdRewrite m n f
-> FwdRewrite m n f

Rewrite functionr1 ‘thenFwdRw‘ r2 first does the rewrites ofr1,
then the rewrites ofr2.

4.4 Shallow vs deep rewriting

When a node is rewritten, the replacement graphg must itself
be analyzed, and its nodes may be further rewritten. Hoopl can
make a recursive call toanalyzeAndRewriteFwdBody—but what
FwdPass should it use? There are two common situations:

• Sometimes we want to analyze and transform the replacement
graph with an unmodifiedFwdPass, thereby further rewriting
the replacement graph. This procedure is calleddeep rewriting.
When deep rewriting is used, the client’s rewrite function must
ensure that the graphs it produces are not rewritten indefinitely
(Section 4.7).

• A client may want to analyze the replacement graphwithout
further rewriting. This procedure is calledshallow rewriting.

6 2010/6/13

Deep rewriting is essential to achieve the full benefits of interleaved
analysis and transformation (Lerner, Grove, and Chambers 2002).
But shallow rewriting can be vital as well; for example, a backward
dataflow pass that inserts a spill before a call must not rewrite the
call again, lest it attempt to insert infinitely many spills.

An innovation of Hoopl is to build the choice of shallow or deep
rewriting into each rewrite function, as expressed by theFwdRew
type returned by aFwdRewrite (Figure 4). The first component
of theFwdRew is the replacement graph, as discussed earlier. The
second component,rw , is anew rewrite functionto use when recur-
sively processing the replacement graph. For shallow rewriting this
new function is the constantNothing function; for deep rewrit-
ing it is the original rewrite function. WhilemkFRewrite allows
for general rewriting, most clients will take advantage of Hoopl’s
support for these two common cases:

deepFwdRw, shallowFwdRw
:: Monad m
=> (forall e x . n e x -> f -> m (Maybe (Graph n e x))
-> FwdRewrite m n f

4.5 When the type of nodes is not known

We note above (Section 4.2) that the type of the transfer function’s
result depends on the argument’s shape on exit. It is easy for a client
to write a type-indexed transfer function, because the client defines
the constructor and shape for each node. The client’s transfer func-
tions discriminate on the constructor and so can return a result that
is indexed by each node’s shape.

What if you want to write a transfer function that doesnot know
the type of the node? For example, a dominator analysis need not
scrutinize nodes; it needs to know only about labels and edges in
the graph. Ideally, a dominator analysis would work withany type
of noden, provided only thatn is an instance of theNonLocal type
class. But if we don’t know the type ofn, we can’t write a function
of typen e x -> f -> Fact x f, because the only way to get the
result type right is to scrutinize the constructors ofn.

There is another way; instead of requiring a single function that is
polymorphic in shape, Hoopl will also accept a triple of functions,
each of which is polymorphic in the node’s type but monomorphic
in its shape:

mkFTransfer3 :: (n C O -> f -> Fact O f)
-> (n O O -> f -> Fact O f)
-> (n O C -> f -> Fact C f)
-> FwdTransfer n f

We have used this interface to write a number functions that are
polymorphic in the node typen:

• A function that takes aFwdTransfer and wraps it in logging
code, so an analysis can be debugged by watching the facts flow
through the nodes

• A pairing function that runs two passes interleaved, not sequen-
tially, potentially producing better results than any sequence:

pairFwd :: Monad m
=> FwdPass m n f
-> FwdPass m n f’
-> FwdPass m n (f, f’)

• An efficient dominator analysis in the style of Cooper, Harvey,
and Kennedy (2001), whose transfer function is implemented
using only the functions in theNonLocal type class

4.6 Example: Constant propagation and constant folding

Figure 5 shows client code for constant propagation and constant
folding. For each variable, at each program point, the analysis

-- Type and definition of the lattice
type ConstFact = Map.Map Var (WithTop Lit)
constLattice :: DataflowLattice ConstFact
constLattice = DataflowLattice

{ fact_bot = Map.empty
, fact_join = stdMapJoin (extendJoinDomain constFactAdd) }
where

constFactAdd _ (OldFact old) (NewFact new)
= if new == old then (NoChange, PElem new)

else (SomeChange, Top)

--
-- Analysis: variable equals a literal constant
varHasLit :: FwdTransfer Node ConstFact
varHasLit = mkFTransfer ft
where
ft :: Node e x -> ConstFact -> Fact x ConstFact
ft (Label _) f = f
ft (Assign x (Lit k)) f = Map.insert x (PElem k) f
ft (Assign x _) f = Map.insert x Top f
ft (Store _ _) f = f
ft (Branch l) f = mkFactBase [(l, f)]
ft (Cond (Var x) tl fl) f

= mkFactBase [(tl, Map.insert x (b True) f),
(fl, Map.insert x (b False) f)]

where b = PElem . Bool
ft (Cond _ tl fl) f = mkFactBase [(tl, f), (fl, f)]

--
-- Rewriting: propagate and fold constants
constProp :: Monad m => FwdRewrite m Node ConstFact
constProp = shallowFwdRw cp
where

cp node f
= return $ liftM nodeToG $ mapVN (lookup f) node

mapVN = mapEN . mapEE . mapVE
lookup f x = case Map.lookup x f of

Just (PElem v) -> Just $ Lit v
_ -> Nothing

--
-- Simplification ("constant folding")
simplify :: Monad m => FwdRewrite m Node f
simplify = deepFwdRw simp
where
simp node _ = return $ liftM nodeToG $ s_node node
s_node :: Node e x -> Maybe (Node e x)
s_node (Cond (Lit (Bool b)) t f)

= Just $ Branch (if b then t else f)
s_node n = (mapEN . mapEE) s_exp n
s_exp (Binop Add (Lit (Int n1)) (Lit (Int n2)))

= Just $ Lit $ Int $ n1 + n2
-- ... more cases for constant folding

--
-- Defining the forward dataflow pass
constPropPass = FwdPass

{ fp_lattice = constLattice
, fp_transfer = varHasLit
, fp_rewrite = constProp ‘thenFwdRw‘ simplify }

Figure 5. The client for constant propagation and constant folding
(extracted automatically from code distributed with Hoopl)

concludes one of three facts: the variable holds a constant value of
typeLit, the variable might hold a non-constant value, or what the
variable holds is unknown. We represent these facts using a finite
map from a variable to a fact of typeWithTop Lit (Section 4.1).
A variable with a constant value maps toJust (PElem k), where
k is the constant value; a variable with a non-constant value maps to
Just Top; and a variable with an unknown value maps toNothing
(it is not in the domain of the finite map).

7 2010/6/13

The definition of the lattice (constLattice) is straightforward.
The bottom element is an empty map (nothing is known about
what any variable holds). The join function is implemented with
the help of combinators provided by Hoopl. The client writes a
simple function,constFactAdd, which compares two values of
typeLit and returns a result of typeWithTop Lit. The client uses
extendJoinDomain to lift constFactAdd into a join function on
WithTop Lit, then usesstdMapJoin to lift that join function up
to the map containing facts for all variables.

The forward transfer functionvarHasLit is defined using the
shape-polymorphic auxiliary functionft. For most nodesn, ft n
simply propagates the input fact forward. But for an assignment
node, if a variablex gets a constant valuek, ft extends the input
fact by mappingx to PElem k. And if a variablex is assigned a
non-constant value,ft extends the input fact by mappingx to Top.
There is one other interesting case: a conditional branch where
the condition is a variable. If the conditional branch flows to the
true successor, the variable holdsTrue, and similarly for the false
successor,mutatis mutandis. Functionft updates the fact flowing
to each successor accordingly.

The transfer function need not consider complicated cases such as
an assignmentx:=y wherey holds a constant valuek. Instead,
we rely on the interleaving of transformation and analysis to first
transform the assignment tox:=k, which is exactly what our simple
transfer function expects. As we mention in Section 2, interleaving
makes it possible to write very simple transfer functions, without
missing opportunities to improve the code.

Figure 5’s rewrite function for constant propagation,constProp,
rewrites each use of a variable to its constant value. The client has
defined auxiliary functions that may change expressions or nodes:

type MaybeChange a = a -> Maybe a
mapVE :: (Var -> Maybe Expr) -> MaybeChange Expr
mapEE :: MaybeChange Expr -> MaybeChange Expr
mapEN :: MaybeChange Expr -> MaybeChange (Node e x)
mapVN :: (Var -> Maybe Expr) -> MaybeChange (Node e x)
nodeToG :: Node e x -> Graph Node e x

The client composesmapXX functions to applylookup to each use
of a variable in each kind of node;lookup substitutes for each
variable that has a constant value. ApplyingliftM nodeToG lifts
the final node, if present, into aGraph.

Figure 5 also gives another, distinct function for constant folding:
simplify. This function rewrites constant expressions to their
values, and it rewrites a conditional branch on a boolean constant
to an unconditional branch. To rewrite constant expressions, it runs
s_exp on every subexpression. Functionsimplify does not check
whether a variable holds a constant value; it relies onconstProp
to have replaced the variable by the constant. Indeed,simplify
does not consult the incoming fact, so it is polymorphic inf.

TheFwdRewrite functionsconstProp andsimplify are useful
independently. In this case, however, we wantbothof them, so we
compose them withthenFwdRw. The composition, along with the
lattice and the transfer function, goes intoconstPropPass (bottom
of Figure 5). GivenconstPropPass, we can improve a graphg by
passingconstPropPass andg to analyzeAndRewriteFwdBody.

4.7 Correctness

Facts computed by the transfer function depend on graphs produced
by the rewrite function, which in turn depend on facts computed by
the transfer function. How do we know this algorithm is sound, or
if it terminates? A proof requires a POPL paper (Lerner, Grove, and
Chambers 2002); here we merely state the conditions for correct-
ness as applied to Hoopl:

• The lattice must have noinfinite ascending chains; that is,
every sequence of calls tofact_join must eventually return
NoChange.

• The transfer function must bemonotonic: given a more infor-
mative fact in, it must produce a more informative fact out.

• The rewrite function must besound: if it replaces a noden by a
replacement graphg, theng must be observationally equivalent
to n under the assumptions expressed by the incoming dataflow
factf. Moreover, analysis ofg must produce output fact(s) that
are at least as informative as the fact(s) produced by applying
the transfer function ton. For example, if the transfer function
says thatx=7 after the noden, then after analysis ofg, x had
better still be7.

• A transformation that uses deep rewriting must not return a re-
placement graph which contains a node that could be rewritten
indefinitely.

Under these conditions, the algorithm terminates and is sound.

5. Hoopl’s implementation
Section 4 gives a client’s-eye view of Hoopl, showing how to use
it to create analyses and transformations. Hoopl’s interface is sim-
ple, but theimplementationof interleaved analysis and rewriting
is not. Lerner, Grove, and Chambers (2002) do not describe their
implementation. We have written at least three previous implemen-
tations, all of which were long and hard to understand, and only one
of which provided compile-time guarantees about open and closed
shapes. We are not confident that any of our previous implementa-
tions are correct.

In this paper we describe a new implementation. It is elegant and
short (about a third of the size of our last attempt), and it offers
strong compile-time guarantees about shapes.

We describe the implementation offorward analysis and transfor-
mation. The implementations of backward analysis and transfor-
mation are exactly analogous and are included in Hoopl.

5.1 Overview

Instead of the interface functionanalyzeAndRewriteFwdBody,
we present the private functionarfGraph (short for “analyze and
rewrite forward graph”):

arfGraph
:: forall m n f e x. (FuelMonad m, NonLocal n)
=> FwdPass m n f -- lattice, transfers, rewrites
-> MaybeC e [Label] -- entry points for a closed graph
-> Graph n e x -- the original graph
-> Fact e f -- fact(s) flowing into the entry/entries
-> m (DG f n e x, Fact x f)

Function arfGraph has a more general type than the function
analyzeAndRewriteFwdBody becausearfGraph is used recur-
sively to analyze graphs of all shapes. If a graph is closed on en-
try, a list of entry points must be provided; if the graph is open
on entry, the graph’s entry sequence must be the only entry point.
The graph’s shape on entry also determines the type of fact or facts
flowing in. Finally, the result is a “decorated graph”DG f n e x,
and if the graph is open on exit, an “exit fact” flowing out.

A “decorated graph” is one in which each block is decorated with
the fact that holds at the start of the block.DG actually shares a
representation withGraph, which is possible because the definition
of Graph in Figure 2 contains a white lie:Graph is a type synonym
for an underlying typeGraph’, which takes the type of block as an
additional parameter. (Similarly, functiongSplice in Section 3.5
is actually a higher-order function that takes a block-concatenation

8 2010/6/13

function as a parameter.) The truth aboutGraph and DG is as
follows:

type Graph = Graph’ Block
type DG f = Graph’ (DBlock f)
data DBlock f n e x = DBlock f (Block n e x)
toDg :: NonLocal n => f -> Block n e x -> DG f n e x

TypeDG is internal to Hoopl; it is not seen by any client. To convert
aDG to theGraph andFactBase that are returned by the API func-
tion analyzeAndRewriteFwdBody, we use a 12-line function:

normalizeGraph
:: NonLocal n => DG f n e x -> (Graph n e x, FactBase f)

FunctionarfGraph is implemented as follows:

arfGraph pass entries = graph
where
node :: forall e x . (ShapeLifter e x)

=> n e x -> f -> m (DG f n e x, Fact x f)
block:: forall e x .

Block n e x -> f -> m (DG f n e x, Fact x f)
body :: [Label] -> LabelMap (Block n C C)

-> Fact C f -> m (DG f n C C, Fact C f)
graph:: Graph n e x -> Fact e f -> m (DG f n e x, Fact x f)
... definitions of ’node’, ’block’, ’body’, and ’graph’ ...

The four auxiliary functions help us separate concerns: for ex-
ample, onlynode knows about rewrite functions; and onlybody
knows about fixed points. Each auxiliary function works the same
way: it takes a “thing” and returns anextended fact transformer.
An extended fact transformer takes dataflow fact(s) coming into
the “thing,” and it returns an output fact. It also returns a decorated
graph representing the (possibly rewritten) “thing”—that’s theex-
tendedpart. Finally, because a rewrite may require fresh names pro-
vided by the client, may wish to consult state provided by the client,
or may consume “optimization fuel” (Section 5.4), every extended
fact transformer is monadic.

The types of the four extended fact transformers are not quite
identical:

• Extended fact transformers for nodes and blocks have the same
type; like forward transfer functions, they expect a factf rather
than the more generalFact e f required for a graph. Because
a node or a block has exactly one fact flowing into the entry, it
is easiest simply to pass that fact.

• Extended fact transformers for graphs have the most general
type, as expressed usingFact: if the graph is open on entry, its
fact transformer expects a single fact; if the graph is closed on
entry, its fact transformer expects aFactBase.

• Extended fact transformers for bodies have the same type as
extended fact transformers for closed/closed graphs.

FunctionarfGraph and its four auxiliary functions comprise a
cycle of mutual recursion:arfGraph calls graph; graph calls
body andblock; body callsblock; block callsnode; andnode
calls arfGraph. These five functions do three different kinds of
work: compose extended fact transformers, analyze and rewrite
nodes, and compute fixed points.

5.2 Analyzing blocks and graphs by composing extended fact
transformers

Extended fact transformers compose nicely. For example,block is
implemented thus:

block :: forall e x .
Block n e x -> f -> m (DG f n e x, Fact x f)

block (BFirst n) = node n
block (BMiddle n) = node n
block (BLast n) = node n
block (BCat b1 b2) = block b1 ‘cat‘ block b2

The composition functioncat feeds facts from one extended fact
transformer to another, and it splices decorated graphs. It has a very
general type:

cat :: forall m e a x f f1 f2. Monad m
=> (f -> m (DG f n e a, f1))
-> (f1 -> m (DG f n a x, f2))
-> (f -> m (DG f n e x, f2))

cat ft1 ft2 f = do { (g1,f1) <- ft1 f
; (g2,f2) <- ft2 f1
; return (g1 ‘dgSplice‘ g2, f2) }

(FunctiondgSplice is the same splicing function used for an or-
dinaryGraph, but it uses a one-line block-concatenation function
suitable forDBlocks.) The namecat comes from the concatena-
tion of the decorated graphs, but it is also appropriate because the
style in which it is used is reminiscent ofconcatMap, with the
node andblock functions playing the role ofmap.

Functiongraph is much likeblock, but it has more cases.

5.3 Analyzing and rewriting nodes

Thenode function is where we interleave analysis with rewriting:

node :: forall e x . (ShapeLifter e x, FuelMonad m)
=> n e x -> f -> m (DG f n e x, Fact x f)

node n f
= do { rew <- withFuel =<< frewrite pass n f

; case rew of
Nothing -> return (singletonDG f n,

ftransfer pass n f)
Just (FwdRew g rw) ->

let pass’ = pass { fp_rewrite = rw }
f’ = fwdEntryFact n f

in arfGraph pass’ (fwdEntryLabel n) g f’ }

withFuel :: FuelMonad m => Maybe a -> m (Maybe a)

class ShapeLifter e x where
singletonDG :: f -> n e x -> DG f n e x
fwdEntryFact :: NonLocal n => n e x -> f -> Fact e f
fwdEntryLabel :: NonLocal n => n e x -> MaybeC e [Label]
ftransfer :: FwdPass m n f -> n e x -> f -> Fact x f
frewrite :: FwdPass m n f -> n e x

-> f -> m (Maybe (FwdRew m n f e x))

Functionnode usesfrewrite to extract the rewrite function from
pass, and applies the rewrite function to the noden and the incom-
ing factf. The result of the rewrite is passed towithFuel, but for
now, pretendwithFuel is “return;” we present the details below
in Section 5.4. The result fromwithFuel, rew, is scrutinized by
thecase expression.

In the Nothing case, no rewrite takes place. We return noden
and its incoming factf as the decorated graphsingletonDG f n.
To produce the outgoing fact, we apply the transfer function
ftransfer pass to n andf.

In the Just case, we receive a replacement graphg and a new
rewrite functionrw. We recursively analyzeg with arfGraph. This
analysis usespass’, which contains the original lattice and transfer
function from pass, together with the new rewrite functionrw.
FunctionfwdEntryFact converts factf from the typef, which
node expects, to the typeFact e f, whicharfGraph expects.

9 2010/6/13

As you see, several functions called innode are overloaded over
a (private) classShapeLifter, because their implementations de-
pend on the open/closed shape of the node. By design, the shape of
a node is known statically everywherenode is called, so this use of
ShapeLifter is specialized away by the compiler.

5.4 Throttling rewriting using “optimization fuel”

In functionnode, the call towithFuel may prevent a node from
being rewritten. FunctionwithFuel inspects a supply ofoptimiza-
tion fuel, which is stored in aFuelMonad (Figure 4). IfwithFuel is
passed aJust, a rewrite is being requested, and if fuel is available,
withFuel returns theJust, reducing the supply of fuel by one
unit. In all other cases, including when fuel is exhausted,withFuel
has no effect on theFuelMonad andreturnsNothing.

Optimization fuel is used to debug the optimizer: when optimiza-
tion produces a faulty program, we use Whalley’s (1994) technique
to find the fault. Given a program that fails when compiled with op-
timization, a binary search on the amount of optimization fuel finds
ann such that the program works correctly aftern− 1 rewrites but
fails aftern rewrites. Thenth rewrite is faulty.

5.5 Fixed points

The fourth and final auxiliary function ofarfGraph isbody, which
iterates to a fixed point. This part of the implementation is the only
really tricky part, and it is cleanly separated from everything else:

body :: [Label] -> LabelMap (Block n C C)
-> Fact C f -> m (DG f n C C, Fact C f)

body entries blockmap init_fbase
= fixpoint Fwd lattice do_block blocks init_fbase
where

blocks = forwardBlockList entries blockmap
lattice = fp_lattice pass
do_block b fb = block b entryFact

where entryFact = getFact lattice (entryLabel b) fb

FunctiongetFact looks up a fact by its label. If the label is not
found,getFact returns the bottom element of the lattice:

getFact :: DataflowLattice f -> Label -> FactBase f -> f

FunctionforwardBlockList takes a list of possible entry points
and a finite map from labels to blocks. It returns a list of blocks,
sorted into an order that makes forward dataflow efficient.2

forwardBlockList
:: NonLocal n
=> [Label] -> LabelMap (Block n C C) -> [Block n C C]

For example, if the entry point is atL2, and the block atL2 branches
to L1, but not vice versa, then Hoopl will reach a fixed point more
quickly if we processL2 before L1. To find an efficient order,
forwardBlockList uses the methods of theNonLocal class—
entryLabel and successors—to perform a reverse postorder
depth-first traversal of the control-flow graph.

The rest of the work is done byfixpoint, which is shared by both
forward and backward analyses:

data Direction = Fwd | Bwd
fixpoint :: forall m n f. (FuelMonad m, NonLocal n)
=> Direction
-> DataflowLattice f
-> (Block n C C -> Fact C f -> m (DG f n C C, Fact C f))
-> [Block n C C]
-> (Fact C f -> m (DG f n C C, Fact C f))

2 The order of the blocks does not affect the fixed point or any other part of
the answer; it affects only the number of iterations needed toreach the fixed
point.

Except for theDirection passed as the first argument, the type
signature tells the story. The third argument is an extended fact
transformer for a single block;fixpoint applies that function
successively to each block in the list passed as the fourth argument.
The result is an extended fact transformer for the list.

The extended fact transformer returned byfixpoint maintains a
“currentFactBase” which grows monotonically: as each block is
analyzed, the block’s input fact is taken from the currentFactBase,
and the currentFactBase is augmented with the facts that flow
out of the block. The initial value of the currentFactBase is the
inputFactBase, and the extended fact transformer iterates over the
blocks until the currentFactBase stops changing.

Implementingfixpoint requires about 90 lines, formatted nar-
rowly for display in one column. The code is mostly straightfor-
ward, although we try to be clever about deciding when a new fact
means that another iteration over the blocks will be required. There
is one more subtle point worth mentioning, which we highlight by
considering a forward analysis of this graph, where execution starts
atL1:

L1: x:=3; goto L4
L2: x:=4; goto L4
L4: if x>3 goto L2 else goto L5

Block L2 is unreachable. But if we naı̈vely process all the blocks
(say in orderL1, L4, L2), then we will start with the bottom fact for
L2, propagate{x=4} to L4, where it will join with {x=3} to yield
{x=⊤}. Givenx=⊤, the conditional inL4 cannot be rewritten, and
L2 seems reachable. We have lost a good optimization.

Functionfixpoint solves this problem by analyzing a block only
if the block is reachable from an entry point. This trick is safe only
for a forward analysis, which is whyfixpoint takes aDirection
as its first argument.

6. Related work
While there is a vast body of literature on dataflow analysis and op-
timization, relatively little can be found on thedesignof optimizers,
which is the topic of this paper. We therefore focus on the foun-
dations of dataflow analysis and on the implementations of some
comparable dataflow frameworks.

Foundations When transfer functions are monotone and lattices
are finite in height, iterative dataflow analysis converges to a fixed
point (Kam and Ullman 1976). If the lattice’s join operation dis-
tributes over transfer functions, this fixed point is equivalent to
a join-over-all-paths solution to the recursive dataflow equations
(Kildall 1973).3 Kam and Ullman (1977) generalize to some mono-
tone functions. Each client of Hoopl must guarantee monotonicity.

Cousot and Cousot (1977, 1979) introduce abstract interpretation as
a technique for developing lattices for program analysis. Schmidt
(1998) shows that an all-paths dataflow problem can be viewed as
model checking an abstract interpretation.

Muchnick (1997) presents many examples of both particular anal-
yses and related algorithms.

The soundness of interleaving analysis and transformation, even
when not all speculative transformations are performed on later
iterations, was shown by Lerner, Grove, and Chambers (2002).

Frameworks Most dataflow frameworks support only analysis,
not transformation. The framework computes a fixed point of trans-
fer functions, and it is up to the client of the framework to use that

3 Kildall uses meets, not joins. Lattice orientation is conventional, and
conventions have changed. We use Dana Scott’s orientation,in which higher
elements carry more information.

10 2010/6/13

fixed point for transformation. Omitting transformation makes it
much easier to build frameworks, and one can find a spectrum of
designs. We describe two representative designs, then move on to
the prior frameworks that support interleaved analysis and transfor-
mation.

The Soot framework is designed for analysis of Java programs
(Vallée-Rai et al. 2000). While Soot’s dataflow library supports
only analysis, not transformation, we found much to admire in its
design. Soot’s library is abstracted over the representation of the
control-flow graph and the representation of instructions. Soot’s in-
terface for defining lattice and analysis functions is like our own,
although because Soot is implemented in an imperative style, addi-
tional functions are needed to copy lattice elements.

The CIL toolkit (Necula et al. 2002) supports both analysis and
rewriting of C programs, but rewriting is clearly distinct from
analysis: one runs an analysis to completion and then rewrites based
on the results. The framework is limited to one representation of
control-flow graphs and one representation of instructions, both of
which are provided by the framework. The API is complicated;
much of the complexity is needed to enable the client to affect
which instructions the analysis iterates over.

The Whirlwind compiler contains the dataflow framework imple-
mented by Lerner, Grove, and Chambers (2002), who were the first
to interleave analysis and transformation. Their implementation is
much like our early efforts: it is a complicated mix of code that si-
multaneously manages interleaving, deep rewriting, and fixed-point
computation. By separating these tasks, our implementation sim-
plifies the problem dramatically. Whirlwind’s implementation also
suffers from the difficulty of maintaining pointer invariants in a mu-
table representation of control-flow graphs, a problem we have dis-
cussed elsewhere (Ramsey and Dias 2005).

Because speculative transformation is difficult in an imperative set-
ting, Whirlwind’s implementation is split into two phases. The first
phase runs the interleaved analyses and transformations to compute
the final dataflow facts and a representation of the transformations
that should be applied to the input graph. The second phase exe-
cutes the transformations. In Hoopl, because control-flow graphs
are immutable, speculative transformations can be applied imme-
diately, and there is no need for a phase distinction.

7. Performance considerations
Our work on Hoopl is too new for us to be able to say much about
performance. It’s important to know how well Hoopl performs, but
the question is comparative, and there isn’t another library we can
compare Hoopl with. For example, Hoopl is not a drop-in replace-
ment for an existing component of GHC; we introduced Hoopl to
GHC as part of a major refactoring of GHC’s back end. The version
of GHC with Hoopl seems about 15% slower than the previous ver-
sion, and we don’t know what portion of the slowdown can be at-
tributed to the optimizer. What we can say is that the costs of using
Hoopl seem reasonable; there is no “big performance hit.” And a
somewhat similar library, written in animpurefunctional language,
actually improved performance in an apples-to-apples comparison
with a library using a mutable control-flow graph (Ramsey and Dias
2005).

Although a thorough evaluation of Hoopl’s performance must await
future work, we can identify some design decisions that affect
performance.

• In Figure 2, we show a single concatenation operator for blocks.
Using this representation, a block ofN nodes is represented
using2N − 1 heap objects. We have also implemented a rep-
resentation of blocks that include “cons-like” and “snoc-like”

constructors; this representation requires onlyN + 1 heap ob-
jects. We don’t know what difference this choice makes to per-
formance.

• In Section 5, thebody function analyzes and (speculatively)
rewrites the body of a control-flow graph, andfixpoint it-
erates this analysis until it reaches a fixed point. Decorated
graphs computed on earlier iterations are thrown away. But for
each decorated graph ofN nodes, it is necessary to allocate
at least2N − 1 thunks, which correspond to applications of
singletonDG in node and of dgSplice in cat. In an ear-
lier version of Hoopl, this overhead was eliminated by splitting
arfGraph into two very similar functions: one to compute the
fixed point, and the other to produce the rewritten graph. Having
a single version ofarfGraph is simpler and easier to maintain,
but we don’t know the cost of allocating the additional thunks.

• The representation of a forward-transfer function is private to
Hoopl. Two representations are possible: we may store a triple
of functions, one for each shape a node may have; or we may
store a single, polymorphic function. If we use triples through-
out, the costs are straightforward, but the code is complex. If we
use a single, polymorphic function, we sometimes have to use a
shape classifier(supplied by the client) when composing trans-
fer functions. Using a shape classifier may introduce extracase
discriminations every time a transfer function or rewrite func-
tion is applied to a node. We don’t know how these extra dis-
criminations might affect performance.

In summary, Hoopl performs well enough for use in GHC, but there
is much we don’t know. Systematic investigation is indicated.

8. Discussion
We built Hoopl in order to combine three good ideas (interleaved
analysis and transformation, optimization fuel, and an applicative
control-flow graph) in a way that could easily be reused by many,
many compiler writers. To evaluate how well we succeeded, we
examine how Hoopl has been used, we examine the API, and we
examine the implementation.

Using Hoopl As suggested by the constant-propagation example
in Figure 5, Hoopl makes it easy to implement many standard
dataflow analyses. Students using Hoopl in a class at Tufts were
able to implement such optimizations as lazy code motion (Knoop,
Ruething, and Steffen 1992) and induction-variable elimination
(Cocke and Kennedy 1977) in just a few weeks. Students at Yale
and at Portland State have also succeeded in building a variety of
optimizations.

Hoopl’s data types can support optimizations beyond classic
dataflow. For example, within GHC, Hoopl’s graphs are used to
implement optimizations based on control flow, such as eliminat-
ing branch chains. There are other kinds of optimizations that have
not been tried; for example, we know of no attempt to extend Hoopl
to establish or maintain SSA invariants.

Examining the API We hope the our presentation of the API
in Section 4 speaks for itself, but there are a couple of properties
we think are worth highlighting. First, it’s a good sign that the
API provides many higher-order combinators that make it easier
to write client code. We have had space to mention only a few:
extendJoinDomain, thenFwdRw, deepFwdRw, shallowFwdRw,
andpairFwd.

Second, the static encoding of open and closed shapes at compile
time worked out well. Shapes may seem like a small refinement,
but they helped eliminate a number of bugs from GHC, and we
expect them to help other clients too. GADTs are a convenient

11 2010/6/13

way to express shapes, and for clients written in Haskell, they
are clearly appropriate. If one wished to port Hoopl to a language
without GADTs, many of the benefits could be realized by making
the shapes phantom types, but without GADTs, pattern matching
would be significantly more tedious and error-prone.

Examining the implementation If you are thinking of adopting
Hoopl, you had better consider not only whether you like the API,
but whether, in case of emergency, you could maintain the im-
plementation. We believe that Section 5 sketches enough to show
that Hoopl’s implementation is a clear improvement over previ-
ous implementations of similar ideas. By decomposing our imple-
mentation intonode, block, body, graph, cat, withFuel, and
fixpoint, we have clearly separated multiple concerns: interleav-
ing analysis with rewriting, throttling rewriting using optimization
fuel, and computing a fixed point using speculative rewriting. Be-
cause of this separation of concerns, we believe our implementation
will be much easier to maintain than anything that preceded it.

Another good sign is that we have been able to make substan-
tial changes in the implementation without changing the API. For
example, in addition to “concatMap style,” we have also imple-
mentedarfGraph in “fold style” and in continuation-passing style.
Which style is preferred is a matter of taste, and possibly a matter
of performance.

Final remarks Dataflow optimization is usually described as a
way to improve imperative programs by mutating control-flow
graphs. Such transformations appear very different from the tree
rewriting that functional languages are so well known for, and that
makes Haskell so attractive for writing other parts of compilers.
But even though dataflow optimization looks very different from
what we are used to, writing a dataflow optimizer in Haskell was
a win: we had to make every input and output explicit, and we
had a strong incentive to implement things compositionally. Using
Haskell helped us make real improvements in the implementation
of some very sophisticated ideas.

Acknowledgments
Several anonymous reviewers provided helpful feedback, espe-
cially reviewer C, who suggested better language with which to
describe our work.

The first and second authors were funded by a grant from Intel
Corporation and by NSF awards CCF-0838899 and CCF-0311482.
These authors also thank Microsoft Research Ltd, UK, for funding
extended visits to the third author.

References
Andrew W. Appel. 1998.Modern Compiler Implementation. Cambridge

University Press, Cambridge, UK. Available in three editions: C, Java,
and ML.

John Cocke and Ken Kennedy. 1977. An algorithm for reductionof operator
strength.Communications of the ACM, 20(11):850–856.

Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy. 2001. A sim-
ple, fast dominance algorithm. Technical report, Rice University. Un-
published report available fromhttp://www.hipersoft.rice.edu/
grads/publications/dom14.pdf.

Patrick Cousot and Radhia Cousot. 1977 (January). Abstractinterpretation:
A unified lattice model for static analysis of programs by construction
or approximation of fixpoints. InConference Record of the 4th ACM
Symposium on Principles of Programming Languages, pages 238–252.

Patrick Cousot and Radhia Cousot. 1979 (January). Systematic design of
program analysis frameworks. InConference Record of the 6th Annual
ACM Symposium on Principles of Programming Languages, pages 269–
282.

John B. Kam and Jeffrey D. Ullman. 1976. Global data flow analysis and
iterative algorithms.Journal of the ACM, 23(1):158–171.

John B. Kam and Jeffrey D. Ullman. 1977. Monotone data flow analysis
frameworks.Acta Informatica, 7:305–317.

Gary A. Kildall. 1973 (October). A unified approach to globalprogram op-
timization. InConference Record of the ACM Symposium on Principles
of Programming Languages, pages 194–206.

Jens Knoop, Oliver Ruething, and Bernhard Steffen. 1992. Lazy code mo-
tion. Proceedings of the ACM SIGPLAN ’92 Conference on Program-
ming Language Design and Implementation,in SIGPLAN Notices, 27
(7):224–234.

Sorin Lerner, David Grove, and Craig Chambers. 2002 (January). Com-
posing dataflow analyses and transformations.Conference Record of
the 29th Annual ACM Symposium on Principles of Programming Lan-
guages,in SIGPLAN Notices, 31(1):270–282.

Steven S. Muchnick. 1997.Advanced compiler design and implementation.
Morgan Kaufmann, San Mateo, CA.

George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley
Weimer. 2002. CIL: Intermediate language and tools for analysis and
transformation of C programs. InCC ’02: Proceedings of the 11th In-
ternational Conference on Compiler Construction, pages 213–228, Lon-
don, UK. Springer-Verlag.

Norman Ramsey and João Dias. 2005 (September). An applicative control-
flow graph based on Huet’s zipper. InACM SIGPLAN Workshop on ML,
pages 101–122.

David A. Schmidt. 1998. Data flow analysis is model checking of ab-
stract interpretations. In ACM, editor,Conference Record of the 25th
Annual ACM Symposium on Principles of Programming Languages,
pages 38–48.

Raja Valĺee-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice
Pominville, and Vijay Sundaresan. 2000. Optimizing Java bytecode
using the Soot framework: Is it feasible? InCC ’00: Proceedings of the
9th International Conference on Compiler Construction, pages 18–34,
London, UK. Springer-Verlag.

David B. Whalley. 1994 (September). Automatic isolation of compiler
errors.ACM Transactions on Programming Languages and Systems, 16
(5):1648–1659.

12 2010/6/13

http://www.hipersoft.rice.edu/grads/publications/dom14.pdf
http://www.hipersoft.rice.edu/grads/publications/dom14.pdf

A. Index of defined identifiers
This appendix lists every nontrivial identifier used in the body
of the paper. For each identifier, we list the page on which that
identifier is defined or discussed—or when appropriate, the figure
(with line number where possible). For those few identifiers not
defined or discussed in text, we give the type signature and the page
on which the identifier is first referred to.

Some identifiers used in the text are defined in the Haskell Prelude;
for those readers less familiar with Haskell (possible even at the
Haskell Symposium!), these identifiers are listed in Appendix C.

Add :: Operator not shown (but see page 7).
addBlock :: NonLocal n => Block n C C -> LabelMap
(Block n C C) -> LabelMap (Block n C C) not shown (but
see page 4).
analyzeAndRewriteFwdBody defined on page 5.
arfGraph defined on page 8.
Assign defined in Figure 1 on page 3.
b1 let- orλ-bound on page 4.
b2 let- orλ-bound on page 4.
BCat defined in Figure 2 on page 3.
BFirst defined in Figure 2 on page 3.
Binop :: Operator -> Expr -> Expr -> Expr not shown
(but see page 7).
BLast defined in Figure 2 on page 3.
Block defined in Figure 2 on page 3.
block defined on page 9.
blockmap let- orλ-bound on page 10.
blocks let- orλ-bound on page 10.
BMiddle defined in Figure 2 on page 3.
body defined on page 10.
Bot defined on page 6.
Branch defined in Figure 1 on page 3.
bs let- orλ-bound on page 4.
bs1 let- orλ-bound on page 4.
bs2 let- orλ-bound on page 4.
Bwd defined on page 10.
C defined in Figure 2 on page 3.
cat defined on page 9.
ChangeFlag defined in Figure 4 on page 5.
CondBranch defined in Figure 1 on page 3.
ConstFact defined in Figure 5 on page 7.
constFactAdd defined in Figure 5 on page 7.
constLattice defined in Figure 5 on page 7.
constProp defined in Figure 5 on page 7.
constPropPass defined in Figure 5 on page 7.
cp let- orλ-bound in Figure 5 on page 7.
DataflowLattice defined in Figure 4 on page 5.
DBlock defined on page 9.
deepFwdRw defined on page 7.
delFromFactBase :: FactBase f -> [(Label,f)] ->
FactBase f not shown (but see page 13).
DG defined on page 9.
dgSplice defined on page 9.
Direction defined on page 10.
do block let- orλ-bound on page 10.
elemFactBase :: Label -> FactBase f -> Bool not
shown (but see page 13).
elemLabelSet :: Label -> LabelSet -> Bool not shown
(but see page 13).
emptyLabelSet :: LabelSet not shown (but see page 13).
entries let- orλ-bound on page 10.
entryFact let- orλ-bound on page 10.
entryLabel defined in Figure 2 on page 3.
ex let- orλ-bound in Figure 2 on page 3.

Expr defined on page 3.
extendFactBase :: FactBase f -> Label -> f ->
FactBase f not shown (but see page 13).
extendJoinDomain defined on page 6.
extendLabelSet :: LabelSet -> Label -> LabelSet not
shown (but see page 13).
Fact defined in Figure 4 on page 5.
FactBase defined in Figure 4 on page 5.
factBaseLabels :: FactBase f -> [Label] not shown (but
see page 13).
factBaseList :: FactBase f -> [(Label, f)] not shown
(but see page 13).
fact bot defined in Figure 4 on page 5.
fact join defined in Figure 4 on page 5.
forwardBlockList defined on page 10.
fp lattice defined in Figure 4 on page 5.
fp rewrite defined in Figure 4 on page 5.
fp transfer defined in Figure 4 on page 5.
ft let- orλ-bound in Figure 5 on page 7.
Fuel defined in Figure 4 on page 5.
FuelMonad defined in Figure 4 on page 5.
Fwd defined on page 10.
FwdPass defined in Figure 4 on page 5.
FwdRew defined in Figure 4 on page 5.
FwdRewrite defined in Figure 4 on page 5.
FwdTransfer defined in Figure 4 on page 5.
getFact defined on page 10.
getFuel defined in Figure 4 on page 5.
GMany defined in Figure 2 on page 3.
GNil defined in Figure 2 on page 3.
Graph defined in Figure 2 on page 3.
graph defined on page 9.
Graph’ defined on page 8.
gSplice defined on page 4.
GUnit defined in Figure 2 on page 3.
init fbase let- orλ-bound on page 10.
JustO defined in Figure 2 on page 3.
Label defined in Figure 2 on page 3.
LabelMap (a type) not shown (but see page 13).
LabelSet (a type) not shown (but see page 13).
lattice let- orλ-bound on page 10.
lookup let- orλ-bound in Figure 5 on page 7.
lookupFact :: FactBase f -> Label -> Maybe f not
shown (but see page 13).
mapEE defined on page 8.
mapEN defined on page 8.
mapUnion :: LabelMap a -> LabelMap a -> LabelMap a
not shown (but see page 4).
mapVE defined on page 8.
mapVN defined on page 8.
MaybeC (a type of kind* -> * -> *) not shown (but see page 3).
MaybeChange defined on page 8.
MaybeO defined in Figure 2 on page 3.
mkFactBase :: [(Label, f)] -> FactBase f not shown
(but see page 5).
mkFRewrite defined in Figure 4 on page 5.
mkFTransfer defined in Figure 4 on page 5.
mkFTransfer3 defined on page 7.
NewFact defined in Figure 4 on page 5.
NoChange defined in Figure 4 on page 5.
Node defined in Figure 1 on page 3.
node let- orλ-bound in Figure 5 on page 7.
nodeToG defined on page 8.
NonLocal defined in Figure 2 on page 3.
normalizeGraph defined on page 9.

13 2010/6/13

NothingO defined in Figure 2 on page 3.
O defined in Figure 2 on page 3.
OldFact defined in Figure 4 on page 5.
pairFwd defined on page 7.
PElem defined on page 5.
setFuel defined in Figure 4 on page 5.
s exp let- orλ-bound in Figure 5 on page 7.
shallowFwdRw defined on page 7.
simp let- orλ-bound in Figure 5 on page 7.
simplify defined in Figure 5 on page 7.
s node let- orλ-bound in Figure 5 on page 7.
SomeChange defined in Figure 4 on page 5.
stdMapJoin :: Ord k => JoinFun v -> JoinFun
(Map.Map k v) not shown (but see page 8).
Store defined in Figure 1 on page 3.
successors defined in Figure 2 on page 3.
thenFwdRw defined on page 6.
Top defined on page 5.
Var defined on page 3.
varHasLit defined in Figure 5 on page 7.
WithBot defined on page 6.
withFuel defined on page 9.
WithTop defined on page 5.
WithTopAndBot defined on page 6.

B. Undefined identifiers
cnl (p4),Cond (Fig 5, p7),f’ (p7),fb (p10),fixpoint (p10),
fl (Fig 5, p7),frewrite (p9),ft1 (p9),ft2 (p9),
ftransfer (p9),fwdEntryFact (p9),fwdEntryLabel (p9),
Lit (Fig 5, p7),mapXX (p8),new (Fig 5, p7),old (Fig 5, p7),
pass (p9),pass’ (p9),rew (p9),rw (p4),ShapeLifter (p9),
singletonDG (p9),tl (Fig 5, p7),toDg (p9).

C. Identifiers defined in Haskell Prelude or a
standard library

!, $, &, &&, *, +, ++, -, ., /, =<<, ==, >, >=, >>, >>=, Bool,
concatMap, const, curry, Data.Map, drop, False, flip,
fmap, foldl, foldr, fst, head, id, Int, Integer, Just, last,
liftM, map, Map.empty, Map.insert, Map.lookup, Map.Map,
mapM , Maybe, Monad, not, Nothing, otherwise, return, snd,
String, tail, take, True, uncurry, undefined .

14 2010/6/13

	Introduction
	Dataflow analysis & transformation by example
	Representing control-flow graphs
	Shapes: Open and closed
	Nodes
	Blocks
	Control-flow edges and program points
	Graphs
	Labels and successors

	Using Hoopl to analyze and transform graphs
	Dataflow lattices
	The transfer function
	The rewrite function
	Shallow vs deep rewriting
	When the type of nodes is not known
	Example: Constant propagation and constant folding
	Correctness

	Hoopl's implementation
	Overview
	Analyzing blocks and graphs by composing extended fact transformers
	Analyzing and rewriting nodes
	Throttling rewriting using ``optimization fuel''
	Fixed points

	Related work
	Performance considerations
	Discussion
	Index of defined identifiers
	Undefined identifiers
	Identifiers defined in Haskell Prelude or a standard library

