Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
The On-Line Encyclopedia of Integer Sequences, http://oeis.org/
Synopsis
- a000005 :: Integral n => [n]
- a000010 :: Integral n => [n]
- a000010_n :: Integral n => n -> n
- a000012 :: Num n => [n]
- a000031 :: Integral n => [n]
- a000031_n :: Integral n => n -> n
- a000032 :: Num n => [n]
- a000040 :: Integral n => [n]
- a000041 :: Num n => [n]
- a000045 :: Num n => [n]
- a000051 :: Num n => [n]
- a000071 :: Num n => [n]
- a000073 :: Num n => [n]
- a000078 :: Num n => [n]
- a000079 :: Num n => [n]
- a000085 :: Integral n => [n]
- a000108 :: Num n => [n]
- a000120 :: Integral i => [i]
- a000142 :: (Enum n, Num n) => [n]
- a000201 :: Integral n => [n]
- a000204 :: Num n => [n]
- a000213 :: Num n => [n]
- a000217 :: (Enum n, Num n) => [n]
- a000225 :: Num n => [n]
- a000285 :: Num n => [n]
- a000290 :: Integral n => [n]
- a000292 :: (Enum n, Num n) => [n]
- a000384 :: Integral n => [n]
- a000578 :: Num n => [n]
- a000583 :: Integral n => [n]
- a000670 :: Integral n => [n]
- a000796 :: Integral n => [n]
- a000930 :: Num n => [n]
- a000931 :: Num n => [n]
- a001008 :: Integral i => [i]
- a001037 :: Integral n => [n]
- a001037_n :: Integral n => n -> n
- a001113 :: Integral n => [n]
- a001147 :: Integral t => [t]
- a001156 :: Num n => [n]
- a001333 :: Num n => [n]
- a001622 :: Num n => [n]
- a001622_k :: Floating n => n
- a001644 :: Num n => [n]
- a001653 :: [Integer]
- a001687 :: Num n => [n]
- a001950 :: Integral n => [n]
- a002267 :: Num n => [n]
- a002487 :: Num n => [n]
- a002858 :: [Integer]
- ulam :: Int -> Integer -> [Integer] -> [Integer]
- a003108 :: Num n => [n]
- a003215_n :: Num n => n -> n
- a003215 :: (Enum n, Num n) => [n]
- a003269 :: Num n => [n]
- a003520 :: Num n => [n]
- a003462 :: [Integer]
- a003462_n :: Integer -> Integer
- a003586 :: [Integer]
- a003849 :: Num n => [n]
- a004001 :: [Int]
- a004718 :: Num n => [n]
- a005185 :: [Int]
- a005448 :: Integral n => [n]
- a005448_n :: Integral n => n -> n
- a005728 :: Integral i => [i]
- a005811 :: Integral n => [n]
- a005917 :: Integral n => [n]
- a006003 :: Integral n => [n]
- a006003_n :: Integral n => n -> n
- a006046 :: [Int]
- a006052 :: Integral n => [n]
- a006842 :: Integral i => [i]
- a006843 :: Integral i => [i]
- a007318 :: Integral i => [i]
- a007318_tbl :: Integral i => [[i]]
- a008277 :: (Enum n, Num n) => [n]
- a008277_tbl :: (Enum n, Num n) => [[n]]
- a008278 :: (Enum n, Num n) => [n]
- a008278_tbl :: (Enum n, Num n) => [[n]]
- a008683 :: Integral n => [n]
- a008683_n :: Integral n => n -> n
- a010049 :: Num n => [n]
- a010060 :: [Integer]
- a014081 :: (Integral i, Bits i) => [i]
- a014577 :: Integral i => [i]
- a016813 :: Integral n => [n]
- a017817 :: Num n => [n]
- a020695 :: Num n => [n]
- a020985 :: [Integer]
- a022095 :: Num n => [n]
- a022096 :: Num n => [n]
- a027750 :: Integral n => [n]
- a027750_row :: Integral n => n -> [n]
- a027934 :: Num n => [n]
- a029635 :: Num i => [i]
- a029635_tbl :: Num i => [[i]]
- a030308 :: (Eq n, Num n) => [[n]]
- a033622 :: [Integer]
- a033622_n :: Integer -> Integer
- a033812 :: Num n => [n]
- a034968 :: Integral n => [n]
- a036562 :: [Integer]
- a036562_n :: Integer -> Integer
- a046042 :: Num n => [n]
- a047999 :: [Int]
- a047999_tbl :: [[Int]]
- a048993 :: (Enum n, Num n) => [n]
- a048993_tbl :: (Enum n, Num n) => [[n]]
- a049455 :: Integral n => [n]
- a049456 :: Integral n => [n]
- a053121 :: Num n => [n]
- a053121_tbl :: Num n => [[n]]
- a058265 :: Num n => [n]
- a058265_k :: Floating n => n
- a060588a :: Integral n => [n]
- a060588a_n :: Integral n => n -> n
- a061654 :: Integral n => [n]
- a061654_n :: Integral n => n -> n
- a071996 :: Integral n => [n]
- a073334 :: Num n => [n]
- a080843 :: Integral n => [n]
- a080992 :: Num n => [n]
- a083866 :: (Enum n, Num n) => [n]
- a095660 :: Num i => [i]
- a095660_tbl :: Num i => [[i]]
- a095666 :: Num i => [i]
- a095666_tbl :: Num i => [[i]]
- a096940 :: Num i => [i]
- a096940_tbl :: Num i => [[i]]
- a105809 :: Num n => [n]
- a105809_tbl :: Num n => [[n]]
- a124010 :: Integral n => [n]
- a124010_row :: Integral n => n -> [n]
- a124472 :: Num n => [n]
- a125519 :: Num n => [n]
- a126275 :: Integral n => [n]
- a126275_n :: Integral n => n -> n
- a126276 :: Integral n => [n]
- a126276_n :: Integral n => n -> n
- a126651 :: Num n => [n]
- a126652 :: Num n => [n]
- a126653 :: Num n => [n]
- a126654 :: Num n => [n]
- a126709 :: Num n => [n]
- a126710 :: Num n => [n]
- a126976 :: Num n => [n]
- a212804 :: Integral n => [n]
- a245553 :: Integral n => [n]
- a255723 :: Num n => [n]
- a256184 :: Num n => [n]
- a256185 :: Num n => [n]
- a270876 :: Integral n => [n]
- a320872 :: Num n => [n]
Documentation
a000005 :: Integral n => [n] Source #
d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n. (Formerly M0246 N0086)
- 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 7, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4, 4, 8, 2, 12, 4, 6, 4, 4, 4, 12, 2, 6, 6, 9, 2, 8, 2, 8
isPrefixOf
a000005
a000010 :: Integral n => [n] Source #
Euler totient function phi(n): count numbers <= n and prime to n.
[1,1,2,2,4,2,6,4,6,4,10,4,12,6,8,8,16,6,18,8,12,10,22,8,20,12] `isPrefixOf` a000010
a000031 :: Integral n => [n] Source #
Number of n-bead necklaces with 2 colors when turning over is not allowed; also number of output sequences from a simple n-stage cycling shift register; also number of binary irreducible polynomials whose degree divides n.
[1,2,3,4,6,8,14,20,36,60,108,188,352,632,1182,2192,4116,7712,14602,27596] `isPrefixOf` a000031
a000032 :: Num n => [n] Source #
Lucas numbers beginning at 2: L(n) = L(n-1) + L(n-2), L(0) = 2, L(1) = 1. (Formerly M0155)
[2,1,3,4,7,11,18,29,47,76,123,199,322,521,843,1364,2207,3571,5778,9349,15127] `isPrefixOf` a000032
a000040 :: Integral n => [n] Source #
The prime numbers.
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103] `isPrefixOf` a000040
a000041 :: Num n => [n] Source #
a(n) is the number of partitions of n (the partition numbers).
- 1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,297,385,490,627,792,1002,1255
isPrefixOf
a000041
a000045 :: Num n => [n] Source #
Fibonacci numbers
[0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946] `isPrefixOf` a000045
a000051 :: Num n => [n] Source #
a(n) = 2^n + 1
[2,3,5,9,17,33,65,129,257,513,1025,2049,4097,8193,16385,32769,65537,131073] `isPrefixOf` a000051
a000071 :: Num n => [n] Source #
a(n) = Fibonacci(n) - 1.
[0,0,1,2,4,7,12,20,33,54,88,143,232,376,609,986,1596,2583,4180,6764,10945,17710] `isPrefixOf` a000071
a000073 :: Num n => [n] Source #
Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) for n >= 3 with a(0) = a(1) = 0 and a(2) = 1.
[0,0,1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136,5768,10609,19513,35890] `isPrefixOf` a000073
a000078 :: Num n => [n] Source #
Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) with a(0)=a(1)=a(2)=0, a(3)=1.
[0,0,0,1,1,2,4,8,15,29,56,108,208,401,773,1490,2872,5536,10671,20569,39648] `isPrefixOf` a000078
a000079 :: Num n => [n] Source #
Powers of 2: a(n) = 2^n. (Formerly M1129 N0432)
[1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536] `isPrefixOf` a000079 [1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536] `isPrefixOf` map (2 ^) [0..]
a000085 :: Integral n => [n] Source #
Number of self-inverse permutations on n letters, also known as involutions; number of standard Young tableaux with n cells.
[1,1,2,4,10,26,76,232,764,2620,9496,35696,140152,568504,2390480,10349536] `isPrefixOf` a000085
a000108 :: Num n => [n] Source #
Catalan numbers: C(n) = binomial(2n,n)(n+1) = (2n)!(n!(n+1)!).
[1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845] `isPrefixOf` a000108
a000120 :: Integral i => [i] Source #
1's-counting sequence: number of 1's in binary expansion of n (or the binary weight of n).
[0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,1,2,2,3,2,3,3] `isPrefixOf` a000120
a000142 :: (Enum n, Num n) => [n] Source #
Factorial numbers: n! = 1*2*3*4*...*n (order of symmetric group S_n, number of permutations of n letters).
[1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600,6227020800] `isPrefixOf` a000142
a000201 :: Integral n => [n] Source #
Lower Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi), where phi = (1+sqrt(5))/2 = A001622
[1,3,4,6,8,9,11,12,14,16,17,19,21,22,24,25,27,29,30,32,33,35,37,38,40,42] `isPrefixOf` a000201
import Sound.SC3.Plot plot_p1_imp [take 128 a000201 :: [Int]]
a000204 :: Num n => [n] Source #
Lucas numbers (beginning with 1): L(n) = L(n-1) + L(n-2) with L(1) = 1, L(2) = 3
[1,3,4,7,11,18,29,47,76,123,199,322,521,843,1364,2207,3571,5778,9349,15127] `isPrefixOf` a000204
a000213 :: Num n => [n] Source #
Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=a(1)=a(2)=1.
- 1,1,1,3,5,9,17,31,57,105,193,355,653,1201,2209,4063,7473,13745,25281,46499
isPrefixOf
a000213
a000217 :: (Enum n, Num n) => [n] Source #
Triangular numbers: a(n) = binomial(n+1,2) = n(n+1)/2 = 0 + 1 + 2 + ... + n.
[0,1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210,231,253,276] `isPrefixOf` a000217
a000225 :: Num n => [n] Source #
a(n) = 2^n - 1 (Sometimes called Mersenne numbers, although that name is usually reserved for A001348)
[0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535] `isPrefixOf` a000225
a000285 :: Num n => [n] Source #
a(0) = 1, a(1) = 4, and a(n) = a(n-1) + a(n-2) for n >= 2. (Formerly M3246 N1309)
[1,4,5,9,14,23,37,60,97,157,254,411,665,1076,1741,2817,4558,7375,11933,19308] `isPrefixOf` a000285
a000290 :: Integral n => [n] Source #
The squares of the non-negative integers.
[0,1,4,9,16,25,36,49,64,81,100] `isPrefixOf` a000290
a000292 :: (Enum n, Num n) => [n] Source #
Tetrahedral (or triangular pyramidal) numbers: a(n) = C(n+2,3) = n*(n+1)*(n+2)/6.
[0,1,4,10,20,35,56,84,120,165,220,286,364,455,560,680,816,969,1140,1330,1540] `isPrefixOf` a000292
a000384 :: Integral n => [n] Source #
Hexagonal numbers: a(n) = n*(2*n-1). (Formerly M4108 N1705)
[0,1,6,15,28,45,66,91,120,153,190,231,276,325,378,435,496,561,630,703,780,861] `isPrefixOf` a000384
a000578 :: Num n => [n] Source #
The cubes: a(n) = n^3.
[0,1,8,27,64,125,216,343,512,729,1000,1331,1728,2197,2744,3375,4096,4913,5832] `isPrefixOf` a000578
a000583 :: Integral n => [n] Source #
Fourth powers: a(n) = n^4.
[0,1,16,81,256,625,1296,2401,4096,6561,10000,14641,20736,28561,38416,50625] `isPrefixOf` a000583
a000670 :: Integral n => [n] Source #
Fubini numbers: number of preferential arrangements of n labeled elements; or number of weak orders on n labeled elements; or number of ordered partitions of [n].
[1,1,3,13,75,541,4683,47293,545835,7087261,102247563,1622632573,28091567595] `isPrefixOf` a000670
a000796 :: Integral n => [n] Source #
Decimal expansion of Pi (or digits of Pi).
[3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3,3,8,3,2,7,9,5,0,2,8,8,4,1,9] `isPrefixOf` a000796
pi :: Data.Number.Fixed.Fixed Data.Number.Fixed.Prec500
a000930 :: Num n => [n] Source #
Narayana's cows sequence.
[1,1,1,2,3,4,6,9,13,19,28,41,60] `isPrefixOf` a000930
a000931 :: Num n => [n] Source #
Padovan sequence (or Padovan numbers): a(n) = a(n-2) + a(n-3) with a(0) = 1, a(1) = a(2) = 0.
[1,0,0,1,0,1,1,1,2,2,3,4,5,7,9,12,16,21,28,37,49,65,86,114,151,200,265] `isPrefixOf` a000931
a001008 :: Integral i => [i] Source #
Numerators of harmonic numbers H(n) = Sum_{i=1..n} 1/i
- 1,3,11,25,137,49,363,761,7129,7381,83711,86021,1145993,1171733,1195757,2436559
isPrefixOf
a001008
a001037 :: Integral n => [n] Source #
Number of degree-n irreducible polynomials over GF(2); number of n-bead necklaces with beads of 2 colors when turning over is not allowed and with primitive period n; number of binary Lyndon words of length n.
[1,2,1,2,3,6,9,18,30,56,99,186,335,630,1161,2182,4080,7710,14532,27594,52377,99858,190557,364722,698870] `isPrefixOf` a001037
a001113 :: Integral n => [n] Source #
Decimal expansion of e.
[2,7,1,8,2,8,1,8,2,8,4,5,9,0,4,5,2,3,5,3,6,0,2,8,7,4,7,1,3,5,2,6,6,2,4,9,7,7,5] `isPrefixOf` a001113
exp 1 :: Data.Number.Fixed.Fixed Data.Number.Fixed.Prec500
a001147 :: Integral t => [t] Source #
Double factorial of odd numbers: a(n) = (2*n-1)!! = 1*3*5*...*(2*n-1). (Formerly M3002 N1217)
[1,1,3,15,105,945,10395,135135,2027025,34459425,654729075,13749310575] `isPrefixOf` a001147
a001156 :: Num n => [n] Source #
Number of partitions of n into squares.
[1,1,1,1,2,2,2,2,3,4,4,4,5,6,6,6,8,9,10,10,12,13,14,14,16,19,20,21,23,26,27,28] `isPrefixOf` a001156
a001333 :: Num n => [n] Source #
Numerators of continued fraction convergents to sqrt(2).
- 1,1,3,7,17,41,99,239,577,1393,3363,8119,19601,47321,114243,275807,665857
isPrefixOf
a001333
a001622 :: Num n => [n] Source #
Decimal expansion of golden ratio phi (or tau) = (1 + sqrt(5))/2.
[1,6,1,8,0,3,3,9,8,8,7,4,9,8,9,4,8,4,8,2,0,4,5,8,6,8,3,4,3,6,5,6,3,8,1,1,7,7,2] `isPrefixOf` a001622
a001622_k :: Data.Number.Fixed.Fixed Data.Number.Fixed.Prec500
a001644 :: Num n => [n] Source #
a(n) = a(n-1) + a(n-2) + a(n-3), a(0)=3, a(1)=1, a(2)=3.
- 3,1,3,7,11,21,39,71,131,241,443,815,1499,2757,5071,9327,17155,31553,58035,106743
isPrefixOf
a001644
Numbers k such that 2*k^2 - 1 is a square.
[1, 5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, 38613965, 225058681, 1311738121, 7645370045, 44560482149] `isPrefixOf` a001653
a001687 :: Num n => [n] Source #
a(n) = a(n-2) + a(n-5).
- 0,1,0,1,0,1,1,1,2,1,3,2,4,4,5,7,7,11,11,16,18,23,29,34,45,52,68,81,102,126,154
isPrefixOf
a001687
a001950 :: Integral n => [n] Source #
Upper Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi^2), where phi = (1+sqrt(5))/2
[2,5,7,10,13,15,18,20,23,26,28,31,34,36,39,41,44,47,49,52,54,57,60,62,65] `isPrefixOf` a001950
a002487 :: Num n => [n] Source #
Stern's diatomic series (or Stern-Brocot sequence)
[0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7,3,8,5,7,2,7,5,8,3,7,4,5] `isPrefixOf` a002487
Ulam numbers: a(1) = 1; a(2) = 2; for n>2, a(n) = least number > a(n-1) which is a unique sum of two distinct earlier terms.
[1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87, 97, 99, 102, 106, 114, 126] `isPrefixOf` a002858
a003108 :: Num n => [n] Source #
Number of partitions of n into cubes.
[1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,6,6,6,7,7,7,7] `isPrefixOf` a003108
a003215 :: (Enum n, Num n) => [n] Source #
Hex (or centered hexagonal) numbers: 3*n*(n+1)+1 (crystal ball sequence for hexagonal lattice).
[1,7,19,37,61,91,127,169,217,271,331,397,469,547,631,721,817,919,1027,1141] `isPrefixOf` a003215
a003269 :: Num n => [n] Source #
[0,1,1,1,1,2,3,4,5,7,10,14,19,26,36,50,69,95,131,181,250,345,476,657] `isPrefixOf` a003269
a003520 :: Num n => [n] Source #
a(n) = a(n-1) + a(n-5); a(0) = ... = a(4) = 1.
[1,1,1,1,1,2,3,4,5,6,8,11,15,20,26,34,45,60,80,106,140,185,245,325,431] `isPrefixOf` a003520
a(n) = (3^n - 1)/2. (Formerly M3463)
- 0, 1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573, 265720, 797161, 2391484, 7174453
isPrefixOf
a003462
3-smooth numbers: numbers of the form 2^i*3^j with i, j >= 0
- 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 128, 144, 162
isPrefixOf
a003586
a003849 :: Num n => [n] Source #
The infinite Fibonacci word (start with 0, apply 0->01, 1->0, take limit).
[0,1,0,0,1,0,1,0,0,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,1,0] `isPrefixOf` a003849
Hofstadter-Conway sequence: a(n) = a(a(n-1)) + a(n-a(n-1)) with a(1) = a(2) = 1.
[1,1,2,2,3,4,4,4,5,6,7,7,8,8,8,8,9,10,11,12,12,13,14,14,15,15,15,16,16,16,16,16] `isPrefixOf` a004001
plot_p1_ln [take 250 a004001] plot_p1_ln [zipWith (-) a004001 (map (`div` 2) [1 .. 2000])]
a004718 :: Num n => [n] Source #
Per Nørgård's "infinity sequence"
take 32 a004718 == [0,1,-1,2,1,0,-2,3,-1,2,0,1,2,-1,-3,4,1,0,-2,3,0,1,-1,2,-2,3,1,0,3,-2,-4,5]
plot_p1_imp [take 1024 a004718]
https://www.tandfonline.com/doi/abs/10.1080/17459737.2017.1299807 https://arxiv.org/pdf/1402.3091.pdf
Hofstadter Q-sequence: a(1) = a(2) = 1; a(n) = a(n-a(n-1)) + a(n-a(n-2)) for n > 2.
[1,1,2,3,3,4,5,5,6,6,6,8,8,8,10,9,10,11,11,12,12,12,12,16,14,14,16,16,16,16,20] `isPrefixOf` a005185
a005448 :: Integral n => [n] Source #
Centered triangular numbers: a(n) = 3n(n-1)/2 + 1.
[1,4,10,19,31,46,64,85,109,136,166,199,235,274,316,361,409,460,514,571,631,694] `isPrefixOf` a005448
map a005448_n [1 .. 1000] `isPrefixOf` a005448
a005728 :: Integral i => [i] Source #
Number of fractions in Farey series of order n.
[1,2,3,5,7,11,13,19,23,29,33,43,47,59,65,73,81,97,103,121,129,141,151] `isPrefixOf` a005728
a005811 :: Integral n => [n] Source #
Number of runs in binary expansion of n (n>0); number of 1's in Gray code for n
take 32 a005811 == [0,1,2,1,2,3,2,1,2,3,4,3,2,3,2,1,2,3,4,3,4,5,4,3,2,3,4,3,2,3,2,1]
a005917 :: Integral n => [n] Source #
Rhombic dodecahedral numbers: a(n) = n^4 - (n - 1)^4.
[1,15,65,175,369,671,1105,1695,2465,3439,4641,6095,7825,9855,12209,14911,17985] `isPrefixOf` a005917
a006003 :: Integral n => [n] Source #
a(n) = n*(n^2 + 1)/2.
[0,1,5,15,34,65,111,175,260,369,505,671,870,1105,1379,1695,2056,2465,2925,3439] `isPrefixOf` a006003
map a006003_n [0 .. 1000] `isPrefixOf` a006003
Total number of odd entries in first n rows of Pascal's triangle: a(0) = 0, a(1) = 1, a(2k) = 3*a(k), a(2k+1) = 2*a(k) + a(k+1).
[0,1,3,5,9,11,15,19,27,29,33,37,45,49,57,65,81,83,87,91,99,103,111,119,135,139] `isPrefixOf` a006046
import Sound.SC3.Plot plot_p1_ln [take 250 a006046] let t = log 3 / log 2 plot_p1_ln [zipWith (/) (map fromIntegral a006046) (map (\n -> n ** t) [0.0,1 .. 200])]
a006052 :: Integral n => [n] Source #
Number of magic squares of order n composed of the numbers from 1 to n^2, counted up to rotations and reflections.
[1,0,1,880,275305224] == a006052
a006842 :: Integral i => [i] Source #
Triangle read by rows: row n gives numerators of Farey series of order n.
[0,1,0,1,1,0,1,1,2,1,0,1,1,1,2,3,1,0,1,1,1,2,1,3,2,3,4,1,0,1,1,1,1,2,1,3] `isPrefixOf` a006842 plot_p1_imp [take 200 (a006842 :: [Int])] plot_p1_pt [take 10000 (a006842 :: [Int])]
a006843 :: Integral i => [i] Source #
Triangle read by rows: row n gives denominators of Farey series of order n
[1,1,1,2,1,1,3,2,3,1,1,4,3,2,3,4,1,1,5,4,3,5,2,5,3,4,5,1,1,6,5,4,3,5,2,5] `isPrefixOf` a006843 plot_p1_imp [take 200 (a006843 :: [Int])] plot_p1_pt [take 10000 (a006843 :: [Int])]
a007318 :: Integral i => [i] Source #
Pascal's triangle read by rows
- [1
- ,[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1],[1,5,10,10,5,1]]
isPrefixOf
a007318_tbl
a007318_tbl :: Integral i => [[i]] Source #
a008277 :: (Enum n, Num n) => [n] Source #
Triangle of Stirling numbers of the second kind, S2(n,k), n >= 1, 1 <= k <= n.
- 1,1,1,1,3,1,1,7,6,1,1,15,25,10,1,1,31,90,65,15,1,1,63,301,350,140,21,1
isPrefixOf
a008277
a008277_tbl :: (Enum n, Num n) => [[n]] Source #
a008278 :: (Enum n, Num n) => [n] Source #
Triangle of Stirling numbers of 2nd kind, S(n,n-k+1), n >= 1, 1<=k<=n.
- 1,1,1,1,3,1,1,6,7,1,1,10,25,15,1,1,15,65,90,31,1,1,21,140,350,301,63,1
isPrefixOf
a008278
a008278_tbl :: (Enum n, Num n) => [[n]] Source #
a008683 :: Integral n => [n] Source #
Möbius (or Moebius) function mu(n). mu(1) = 1; mu(n) = (-1)^k if n is the product of k different primes; otherwise mu(n) = 0.
[1,-1,-1,0,-1,1,-1,0,0,1,-1,0,-1,1,1,0,-1,0,-1,0,1,1,-1,0,0,1,0,0,-1,-1,-1,0,1] `isPrefixOf` a008683
a010049 :: Num n => [n] Source #
Second-order Fibonacci numbers.
[0,1,1,3,5,10,18,33,59,105,185,324,564,977,1685,2895,4957,8462,14406,24465,41455] `isInfixOf` a010049
Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 0's and 1's.
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0
isPrefixOf
a010060
a014081 :: (Integral i, Bits i) => [i] Source #
a(n) is the number of occurrences of '11' in binary expansion of n.
[0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 1, 2, 3, 0, 0, 0, 1, 0, 0, 1, 2, 1, 1, 1, 2, 2, 2, 3, 4, 0, 0, 0, 1, 0, 0, 1, 2] `isPrefixOf` a014081
a014577 :: Integral i => [i] Source #
The regular paper-folding sequence (or dragon curve sequence).
[1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1] `isPrefixOf` a014577
a016813 :: Integral n => [n] Source #
a(n) = 4*n + 1.
[1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77,81,85,89,93,97,101] `isPrefixOf` a016813
a017817 :: Num n => [n] Source #
a(n) = a(n-3) + a(n-4), with a(0)=1, a(1)=a(2)=0, a(3)=1
[1,0,0,1,1,0,1,2,1,1,3,3,2,4,6,5,6,10,11,11,16,21,22,27,37,43,49,64,80,92] `isPrefixOf` a017817
a020695 :: Num n => [n] Source #
Pisot sequence E(2,3).
[2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711] `isPrefixOf` a020695
The Rudin-Shapiro or Golay-Rudin-Shapiro sequence (coefficients of the Shapiro polynomials). 45
[1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1] `isPrefixOf` a020985
a022095 :: Num n => [n] Source #
Fibonacci sequence beginning 1, 5.
[1,5,6,11,17,28,45,73,118,191,309,500,809,1309,2118,3427,5545,8972,14517,23489] `isPrefixOf` a022095
a022096 :: Num n => [n] Source #
Fibonacci sequence beginning 1, 6.
[1,6,7,13,20,33,53,86,139,225,364,589,953,1542,2495,4037,6532,10569,17101,27670] `isPrefixOf` a022096
a027750 :: Integral n => [n] Source #
Triangle read by rows in which row n lists the divisors of n.
[1,1,2,1,3,1,2,4,1,5,1,2,3,6,1,7,1,2,4,8,1,3,9,1,2,5,10,1,11,1,2,3,4,6,12,1,13] `isPrefixOf` a027750
a027750_row :: Integral n => n -> [n] Source #
a027934 :: Num n => [n] Source #
a(0)=0, a(1)=1, a(2)=2; for n > 2, a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3).
[0,1,2,5,11,24,51,107,222,457,935,1904,3863,7815,15774,31781,63939,128488] `isPrefixOf` a027934
a029635 :: Num i => [i] Source #
The (1,2)-Pascal triangle (or Lucas triangle) read by rows.
[2,1,2,1,3,2,1,4,5,2,1,5,9,7,2,1,6,14,16,9,2,1,7,20,30,25,11,2,1,8,27,50,55,36] `isPrefixOf` a029635 take 7 a029635_tbl == [[2],[1,2],[1,3,2],[1,4,5,2],[1,5,9,7,2],[1,6,14,16,9,2],[1,7,20,30,25,11,2]]
a029635_tbl :: Num i => [[i]] Source #
a030308 :: (Eq n, Num n) => [[n]] Source #
Triangle T(n,k): Write n in base 2, reverse order of digits, to get the n-th row
take 9 a030308 == [[0],[1],[0,1],[1,1],[0,0,1],[1,0,1],[0,1,1],[1,1,1],[0,0,0,1]]
Good sequence of increments for Shell sort (best on big values).
- 1, 5, 19, 41, 109, 209, 505, 929, 2161, 3905, 8929, 16001, 36289, 64769, 146305, 260609, 587521
isPrefixOf
a033622
a033812 :: Num n => [n] Source #
The Loh-Shu 3 X 3 magic square, lexicographically largest variant when read by columns.
a034968 :: Integral n => [n] Source #
Minimal number of factorials that add to n.
[0,1,1,2,2,3,1,2,2,3,3,4,2,3,3,4,4,5,3,4,4,5,5,6,1,2,2,3,3,4,2,3,3,4,4,5,3,4,4] `isPrefixOf` a034968
a(n) = 4^(n+1) + 3*2^n + 1
- 1, 8, 23, 77, 281, 1073, 4193, 16577, 65921, 262913, 1050113, 4197377, 16783361, 67121153
isPrefixOf
a036562
a046042 :: Num n => [n] Source #
Number of partitions of n into fourth powers.
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3] `isPrefixOf` a046042
Sierpiński's triangle (or gasket): triangle, read by rows, formed by reading Pascal's triangle mod 2.
[1,1,1,1,0,1,1,1,1,1,1,0,0,0,1,1,1,0,0,1,1,1,0,1,0,1,0,1,1,1,1,1,1,1,1,1,1,0,0] `isPrefixOf` a047999
a047999_tbl :: [[Int]] Source #
a048993 :: (Enum n, Num n) => [n] Source #
Triangle of Stirling numbers of 2nd kind, S(n,k), n >= 0, 0 <= k <= n.
[1,0,1,0,1,1,0,1,3,1,0,1,7,6,1,0,1,15,25,10,1,0,1,31,90,65,15,1] `isPrefixOf` a048993
a048993_tbl :: (Enum n, Num n) => [[n]] Source #
a049455 :: Integral n => [n] Source #
Triangle read by rows, numerator of fractions of a variant of the Farey series.
[0,1,0,1,1,0,1,1,2,1,0,1,1,2,1,3,2,3,1,0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,0] `isPrefixOf` a049455 plot_p1_imp [take 200 (a049455 :: [Int])] plot_p1_pt [take 10000 (a049455 :: [Int])]
a049456 :: Integral n => [n] Source #
Triangle read by rows, denominator of fractions of a variant of the Farey series.
- 1,1,1,2,1,1,3,2,3,1,1,4,3,5,2,5,3,4,1,1,5,4,7,3,8,5,7,2,7,5,8,3,7,4,5,1,1,6,5,9
isPrefixOf
a049456 > plot_p1_imp [take 200 (a049456 :: [Int])] > plot_p1_pt [take 10000 (a049456 :: [Int])]
a053121 :: Num n => [n] Source #
Catalan triangle (with 0's) read by rows.
[1,0,1,1,0,1,0,2,0,1,2,0,3,0,1,0,5,0,4,0,1,5,0,9,0,5,0,1,0,14,0,14,0,6,0,1,14,0] `isPrefixOf` a053121 take 7 a053121_tbl == [[1],[0,1],[1,0,1],[0,2,0,1],[2,0,3,0,1],[0,5,0,4,0,1],[5,0,9,0,5,0,1]]
a053121_tbl :: Num n => [[n]] Source #
a058265 :: Num n => [n] Source #
Decimal expansion of the tribonacci constant t, the real root of x^3 - x^2 - x - 1.
[1,8,3,9,2,8,6,7,5,5,2,1,4,1,6,1,1,3,2,5,5,1,8,5,2,5,6,4,6,5,3,2,8,6,6,0,0,4,2] `isPrefixOf` a058265
a058265_k :: Data.Number.Fixed.Fixed Data.Number.Fixed.Prec500
a060588a :: Integral n => [n] Source #
If the final two digits of n written in base 3 are the same then this digit, otherwise mod 3-sum of these two digits.
[0,2,1,2,1,0,1,0,2,0,2,1,2,1,0,1,0,2,0,2,1,2,1,0,1,0,2,0,2,1,2,1,0,1,0,2,0,2,1] `isPrefixOf` a060588a
a060588a_n :: Integral n => n -> n Source #
a061654 :: Integral n => [n] Source #
a(n) = (3*16^n + 2)/5
[1,10,154,2458,39322,629146,10066330,161061274,2576980378,41231686042] `isPrefixOf` a061654
a071996 :: Integral n => [n] Source #
a(1) = 0, a(2) = 1, a(n) = a(floor(n3)) + a(n - floor(n3)).
[0,1,1,1,1,2,2,3,3,3,4,4,4,4,4,5,5,6,6,6,6,6,7,8,8,9,9,9,9,9,9,9,10,11,12,12,12] `isPrefixOf` a071996
plot_p1_ln [take 50 a000201 :: [Int]] plot_p1_imp [map length (take 250 (group a071996))]
a073334 :: Num n => [n] Source #
The "rhythmic infinity system" of Danish composer Per Nørgård
take 24 a073334 == [3,5,8,5,8,13,8,5,8,13,21,13,8,13,8,5,8,13,21,13,21,34,21,13] plot_p1_imp [take 200 (a073334 :: [Int])]
a080843 :: Integral n => [n] Source #
Tribonacci word: limit S(infinity), where S(0) = 0, S(1) = 0,1, S(2) = 0,1,0,2 and for n >= 0, S(n+3) = S(n+2) S(n+1) S(n).
[0,1,0,2,0,1,0,0,1,0,2,0,1,0,1,0,2,0,1,0,0,1,0,2,0,1,0,2,0,1,0,0,1,0,2,0,1,0,1] `isPrefixOf` a080843
a080992 :: Num n => [n] Source #
Entries in Durer's magic square.
[16,3,2,13,5,10,11,8,9,6,7,12,4,15,14,1] == a080992
a083866 :: (Enum n, Num n) => [n] Source #
Positions of zeros in Per Nørgård's infinity sequence (A004718).
take 24 a083866 == [0,5,10,17,20,27,34,40,45,54,65,68,75,80,85,90,99,105,108,119,130,136,141,150]
a095660 :: Num i => [i] Source #
Pascal (1,3) triangle.
[3,1,3,1,4,3,1,5,7,3,1,6,12,10,3,1,7,18,22,13,3,1,8,25,40,35,16,3,1,9,33,65,75] `isPrefixOf` a095660 take 6 a095660_tbl == [[3],[1,3],[1,4,3],[1,5,7,3],[1,6,12,10,3],[1,7,18,22,13,3]]
a095660_tbl :: Num i => [[i]] Source #
a095666 :: Num i => [i] Source #
Pascal (1,4) triangle.
[4,1,4,1,5,4,1,6,9,4,1,7,15,13,4,1,8,22,28,17,4,1,9,30,50,45,21,4,1,10,39,80,95] `isPrefixOf` a095666 take 6 a095666_tbl == [[4],[1,4],[1,5,4],[1,6,9,4],[1,7,15,13,4],[1,8,22,28,17,4]]
a095666_tbl :: Num i => [[i]] Source #
a096940 :: Num i => [i] Source #
Pascal (1,5) triangle.
[5,1,5,1,6,5,1,7,11,5,1,8,18,16,5,1,9,26,34,21,5,1,10,35,60,55,26,5,1,11,45,95] `isPrefixOf` a096940 take 6 a096940_tbl == [[5],[1,5],[1,6,5],[1,7,11,5],[1,8,18,16,5],[1,9,26,34,21,5]]
a096940_tbl :: Num i => [[i]] Source #
a105809 :: Num n => [n] Source #
A Fibonacci-Pascal matrix.
[1,1,1,2,2,1,3,4,3,1,5,7,7,4,1,8,12,14,11,5,1,13,20,26,25,16,6,1,21,33,46,51,41] `isPrefixOf` a105809
a105809_tbl :: Num n => [[n]] Source #
a124010 :: Integral n => [n] Source #
Triangle in which first row is 0, n-th row (n>1) lists the (ordered) prime signature of n, that is, the exponents of distinct prime factors in factorization of n.
[0,1,1,2,1,1,1,1,3,2,1,1,1,2,1,1,1,1,1,1,4,1,1,2,1,2,1,1,1,1,1,1,3,1,2,1,1,3,2,1,1,1,1,1,1,5,1] `isPrefixOf` a124010
a124010_row :: Integral n => n -> [n] Source #
a124472 :: Num n => [n] Source #
Benjamin Franklin's 16 X 16 magic square read by rows.
[200,217,232,249,8,25,40,57,72,89,104,121,136,153,168,185,58,39,26,7,250,231] `isPrefixOf` a124472
a126275 :: Integral n => [n] Source #
Moment of inertia of all magic squares of order n.
[5,60,340,1300,3885,9800,21840,44280,83325,147620,248820,402220,627445,949200] `isPrefixOf` a126275
a126276 :: Integral n => [n] Source #
Moment of inertia of all magic cubes of order n.
[18,504,5200,31500,136710,471968,1378944,3547800,8258250,17728920,35603568] `isPrefixOf` a126276
a126652 :: Num n => [n] Source #
A 3 X 3 magic square with magic sum 75: the Loh-Shu square A033812 multiplied by 5.
a126652 == map (* 5) a033812
a126653 :: Num n => [n] Source #
A 3 X 3 magic square with magic sum 45: the Loh-Shu square A033812 multiplied by 3.
a126653 == map (* 3) a033812
a126709 :: Num n => [n] Source #
The Loh-Shu 3 x 3 magic square, variant 2.
Loh-Shu magic square, attributed to the legendary Fu Xi (Fuh-Hi).
a126710 :: Num n => [n] Source #
Jaina inscription of the twelfth or thirteenth century, Khajuraho, India.
a212804 :: Integral n => [n] Source #
Expansion of (1 - x)/(1 - x - x^2).
- 1,0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946
isPrefixOf
a212804
a245553 :: Integral n => [n] Source #
A Rauzy fractal sequence: trajectory of 1 under morphism 1 -> 2,3; 2 -> 3; 3 -> 1.
[1,2,3,2,3,3,1,2,3,3,1,3,1,1,2,3,2,3,3,1,3,1,1,2,3,3,1,1,2,3,1,2,3,2,3,3,1,2,3] `isPrefixOf` a245553
a255723 :: Num n => [n] Source #
Another variant of Per Nørgård's "infinity sequence"
take 24 a255723 == [0,-2,-1,2,-2,-4,1,0,-1,-3,0,1,2,0,-3,4,-2,-4,1,0,-4,-6,3,-2] plot_p1_imp [take 400 (a255723 :: [Int])]
a256184 :: Num n => [n] Source #
First of two variations by Per Nørgård of his "infinity sequence"
take 24 a256184 == [0,-2,-1,2,-4,-3,1,-3,-2,-2,0,1,4,-6,-5,3,-5,-4,-1,-1,0,3,-5,-4]
a256185 :: Num n => [n] Source #
Second of two variations by Per Nørgård of his "infinity sequence"
take 24 a256185 == [0,-3,-2,3,-6,1,2,-5,0,-3,0,-5,6,-9,4,-1,-2,-3,-2,-1,-4,5,-8,3]
a270876 :: Integral n => [n] Source #
Number of magic tori of order n composed of the numbers from 1 to n^2.
[1,0,1,255,251449712] == a270876