{- | Module : Numeric.GSL.Polynomials Copyright : (c) Alberto Ruiz 2006 License : GPL Maintainer : Alberto Ruiz Stability : provisional Polynomials. <http://www.gnu.org/software/gsl/manual/html_node/General-Polynomial-Equations.html#General-Polynomial-Equations> -} module Numeric.GSL.Polynomials ( polySolve ) where import Data.Packed import Numeric.GSL.Internal import Data.Complex import System.IO.Unsafe (unsafePerformIO) #if __GLASGOW_HASKELL__ >= 704 import Foreign.C.Types (CInt(..)) #endif {- | Solution of general polynomial equations, using /gsl_poly_complex_solve/. For example, the three solutions of x^3 + 8 = 0 >>> polySolve [8,0,0,1] [(-2.0) :+ 0.0,1.0 :+ 1.7320508075688776,1.0 :+ (-1.7320508075688776)] The example in the GSL manual: To find the roots of x^5 -1 = 0: >>> polySolve [-1, 0, 0, 0, 0, 1] [(-0.8090169943749472) :+ 0.5877852522924731, (-0.8090169943749472) :+ (-0.5877852522924731), 0.30901699437494756 :+ 0.9510565162951535, 0.30901699437494756 :+ (-0.9510565162951535), 1.0000000000000002 :+ 0.0] -} polySolve :: [Double] -> [Complex Double] polySolve = toList . polySolve' . fromList polySolve' :: Vector Double -> Vector (Complex Double) polySolve' v | dim v > 1 = unsafePerformIO $ do r <- createVector (dim v-1) app2 c_polySolve vec v vec r "polySolve" return r | otherwise = error "polySolve on a polynomial of degree zero" foreign import ccall unsafe "gsl-aux.h polySolve" c_polySolve:: TV (TCV Res)