module Numeric.LinearProgramming(
simplex,
Optimization(..),
Constraints(..),
Bounds,
Bound(..),
(#),
Solution(..)
) where
import Data.Packed
import Data.Packed.Development
import Foreign(Ptr)
import System.IO.Unsafe(unsafePerformIO)
import Foreign.C.Types
import Data.List((\\),sortBy,nub)
import Data.Function(on)
(#) :: Double -> Int -> (Double,Int)
infixl 5 #
(#) = (,)
data Bound x = x :<=: Double
| x :>=: Double
| x :&: (Double,Double)
| x :==: Double
| Free x
deriving Show
data Solution = Undefined
| Feasible (Double, [Double])
| Infeasible (Double, [Double])
| NoFeasible
| Optimal (Double, [Double])
| Unbounded
deriving Show
data Constraints = Dense [ Bound [Double] ]
| Sparse [ Bound [(Double,Int)] ]
data Optimization = Maximize [Double]
| Minimize [Double]
type Bounds = [Bound Int]
simplex :: Optimization -> Constraints -> Bounds -> Solution
simplex opt (Dense []) bnds = simplex opt (Sparse []) bnds
simplex opt (Sparse []) bnds = simplex opt (Sparse [Free [0#1]]) bnds
simplex opt (Dense constr) bnds = extract sg sol where
sol = simplexSparse m n (mkConstrD sz objfun constr) (mkBounds sz constr bnds)
n = length objfun
m = length constr
(sz, sg, objfun) = adapt opt
simplex opt (Sparse constr) bnds = extract sg sol where
sol = simplexSparse m n (mkConstrS sz objfun constr) (mkBounds sz constr bnds)
n = length objfun
m = length constr
(sz, sg, objfun) = adapt opt
adapt :: Optimization -> (Int, Double, [Double])
adapt opt = case opt of
Maximize x -> (size x, 1 ,x)
Minimize x -> (size x, 1, (map negate x))
where size x | null x = error "simplex: objective function with zero variables"
| otherwise = length x
extract :: Double -> Vector Double -> Solution
extract sg sol = r where
z = sg * (sol@>1)
v = toList $ subVector 2 (dim sol 2) sol
r = case round(sol@>0)::Int of
1 -> Undefined
2 -> Feasible (z,v)
3 -> Infeasible (z,v)
4 -> NoFeasible
5 -> Optimal (z,v)
6 -> Unbounded
_ -> error "simplex: solution type unknown"
obj :: Bound t -> t
obj (x :<=: _) = x
obj (x :>=: _) = x
obj (x :&: _) = x
obj (x :==: _) = x
obj (Free x) = x
tb :: Bound t -> Double
tb (_ :<=: _) = glpUP
tb (_ :>=: _) = glpLO
tb (_ :&: _) = glpDB
tb (_ :==: _) = glpFX
tb (Free _) = glpFR
lb :: Bound t -> Double
lb (_ :<=: _) = 0
lb (_ :>=: a) = a
lb (_ :&: (a,_)) = a
lb (_ :==: a) = a
lb (Free _) = 0
ub :: Bound t -> Double
ub (_ :<=: a) = a
ub (_ :>=: _) = 0
ub (_ :&: (_,a)) = a
ub (_ :==: a) = a
ub (Free _) = 0
mkBound1 :: Bound t -> [Double]
mkBound1 b = [tb b, lb b, ub b]
mkBound2 :: Bound t -> (t, [Double])
mkBound2 b = (obj b, mkBound1 b)
mkBounds :: Int -> [Bound [a]] -> [Bound Int] -> Matrix Double
mkBounds n b1 b2 = fromLists (cb++vb) where
gv' = map obj b2
gv | nub gv' == gv' = gv'
| otherwise = error $ "simplex: duplicate bounds for vars " ++ show (gv'\\nub gv')
rv | null gv || minimum gv >= 0 && maximum gv <= n = [1..n] \\ gv
| otherwise = error $ "simplex: bounds: variables "++show gv++" not in 1.."++show n
vb = map snd $ sortBy (compare `on` fst) $ map (mkBound2 . (:>=: 0)) rv ++ map mkBound2 b2
cb = map mkBound1 b1
mkConstrD :: Int -> [Double] -> [Bound [Double]] -> Matrix Double
mkConstrD n f b1 | ok = fromLists (ob ++ co)
| otherwise = error $ "simplex: dense constraints require "++show n
++" variables, given " ++ show ls
where
cs = map obj b1
ls = map length cs
ok = all (==n) ls
den = fromLists cs
ob = map (([0,0]++).return) f
co = [[fromIntegral i, fromIntegral j,den@@>(i1,j1)]| i<-[1 ..rows den], j<-[1 .. cols den]]
mkConstrS :: Int -> [Double] -> [Bound [(Double, Int)]] -> Matrix Double
mkConstrS n objfun b1 = fromLists (ob ++ co) where
ob = map (([0,0]++).return) objfun
co = concat $ zipWith f [1::Int ..] cs
cs = map obj b1
f k = map (g k)
g k (c,v) | v >=1 && v<= n = [fromIntegral k, fromIntegral v,c]
| otherwise = error $ "simplex: sparse constraints: variable "++show v++" not in 1.."++show n
foreign import ccall unsafe "c_simplex_sparse" c_simplex_sparse
:: CInt -> CInt
-> CInt -> CInt -> Ptr Double
-> CInt -> CInt -> Ptr Double
-> CInt -> Ptr Double
-> IO CInt
simplexSparse :: Int -> Int -> Matrix Double -> Matrix Double -> Vector Double
simplexSparse m n c b = unsafePerformIO $ do
s <- createVector (2+n)
app3 (c_simplex_sparse (fi m) (fi n)) mat (cmat c) mat (cmat b) vec s "c_simplex_sparse"
return s
glpFR, glpLO, glpUP, glpDB, glpFX :: Double
glpFR = 0
glpLO = 1
glpUP = 2
glpDB = 3
glpFX = 4