module Internal.Util(
vector, matrix,
disp,
formatSparse,
approxInt,
dispDots,
dispBlanks,
formatShort,
dispShort,
zeros, ones,
diagl,
row,
col,
(&), (¦), (|||), (——), (===),
(?), (¿),
Indexable(..), size,
Numeric,
rand, randn,
cross,
norm,
ℕ,ℤ,ℝ,ℂ,iC,
Normed(..), norm_Frob, norm_nuclear,
magnit,
unitary,
mt,
(~!~),
pairwiseD2,
rowOuters,
null1,
null1sym,
corr, conv, corrMin,
corr2, conv2, separable,
block2x2,block3x3,view1,unView1,foldMatrix,
gaussElim_1, gaussElim_2, gaussElim,
luST, luSolve', luSolve'', luPacked', luPacked'',
invershur
) where
import Internal.Vector
import Internal.Matrix hiding (size)
import Internal.Numeric
import Internal.Element
import Internal.Container
import Internal.Vectorized
import Internal.IO
import Internal.Algorithms hiding (Normed,linearSolve',luSolve', luPacked')
import Numeric.Matrix()
import Numeric.Vector()
import Internal.Random
import Internal.Convolution
import Control.Monad(when,forM_)
import Text.Printf
import Data.List.Split(splitOn)
import Data.List(intercalate,sortBy,foldl')
import Control.Arrow((&&&),(***))
import Data.Complex
import Data.Function(on)
import Internal.ST
type ℝ = Double
type ℕ = Int
type ℤ = Int
type ℂ = Complex Double
iC :: C
iC = 0:+1
vector :: [R] -> Vector R
vector = fromList
matrix
:: Int
-> [R]
-> Matrix R
matrix c = reshape c . fromList
disp :: Int -> Matrix Double -> IO ()
disp n = putStr . dispf n
diagl :: [Double] -> Matrix Double
diagl = diag . fromList
zeros :: Int
-> Int
-> Matrix Double
zeros r c = konst 0 (r,c)
ones :: Int
-> Int
-> Matrix Double
ones r c = konst 1 (r,c)
infixl 3 &
(&) :: Vector Double -> Vector Double -> Vector Double
a & b = vjoin [a,b]
infixl 3 |||
(|||) :: Element t => Matrix t -> Matrix t -> Matrix t
a ||| b = fromBlocks [[a,b]]
infixl 3 ¦
(¦) :: Matrix Double -> Matrix Double -> Matrix Double
(¦) = (|||)
(===) :: Element t => Matrix t -> Matrix t -> Matrix t
infixl 2 ===
a === b = fromBlocks [[a],[b]]
(——) :: Matrix Double -> Matrix Double -> Matrix Double
infixl 2 ——
(——) = (===)
row :: [Double] -> Matrix Double
row = asRow . fromList
col :: [Double] -> Matrix Double
col = asColumn . fromList
infixl 9 ?
(?) :: Element t => Matrix t -> [Int] -> Matrix t
(?) = flip extractRows
infixl 9 ¿
(¿) :: Element t => Matrix t -> [Int] -> Matrix t
(¿)= flip extractColumns
cross :: Product t => Vector t -> Vector t -> Vector t
cross x y | dim x == 3 && dim y == 3 = fromList [z1,z2,z3]
| otherwise = error $ "the cross product requires 3-element vectors (sizes given: "
++show (dim x)++" and "++show (dim y)++")"
where
[x1,x2,x3] = toList x
[y1,y2,y3] = toList y
z1 = x2*y3x3*y2
z2 = x3*y1x1*y3
z3 = x1*y2x2*y1
norm :: Vector Double -> Double
norm = pnorm PNorm2
class Normed a
where
norm_0 :: a -> R
norm_1 :: a -> R
norm_2 :: a -> R
norm_Inf :: a -> R
instance Normed (Vector R)
where
norm_0 v = sumElements (step (abs v scalar (eps*normInf v)))
norm_1 = pnorm PNorm1
norm_2 = pnorm PNorm2
norm_Inf = pnorm Infinity
instance Normed (Vector C)
where
norm_0 v = sumElements (step (fst (fromComplex (abs v)) scalar (eps*normInf v)))
norm_1 = pnorm PNorm1
norm_2 = pnorm PNorm2
norm_Inf = pnorm Infinity
instance Normed (Matrix R)
where
norm_0 = norm_0 . flatten
norm_1 = pnorm PNorm1
norm_2 = pnorm PNorm2
norm_Inf = pnorm Infinity
instance Normed (Matrix C)
where
norm_0 = norm_0 . flatten
norm_1 = pnorm PNorm1
norm_2 = pnorm PNorm2
norm_Inf = pnorm Infinity
instance Normed (Vector I)
where
norm_0 = fromIntegral . sumElements . step . abs
norm_1 = fromIntegral . norm1
norm_2 v = sqrt . fromIntegral $ dot v v
norm_Inf = fromIntegral . normInf
instance Normed (Vector Z)
where
norm_0 = fromIntegral . sumElements . step . abs
norm_1 = fromIntegral . norm1
norm_2 v = sqrt . fromIntegral $ dot v v
norm_Inf = fromIntegral . normInf
instance Normed (Vector Float)
where
norm_0 = norm_0 . double
norm_1 = norm_1 . double
norm_2 = norm_2 . double
norm_Inf = norm_Inf . double
instance Normed (Vector (Complex Float))
where
norm_0 = norm_0 . double
norm_1 = norm_1 . double
norm_2 = norm_2 . double
norm_Inf = norm_Inf . double
norm_Frob :: (Normed (Vector t), Element t) => Matrix t -> R
norm_Frob = norm_2 . flatten
norm_nuclear :: Field t => Matrix t -> R
norm_nuclear = sumElements . singularValues
magnit :: (Element t, Normed (Vector t)) => R -> t -> Bool
magnit e x = norm_1 (fromList [x]) > e
unitary :: Vector Double -> Vector Double
unitary v = v / scalar (norm v)
mt :: Matrix Double -> Matrix Double
mt = trans . inv
size :: Container c t => c t -> IndexOf c
size = size'
class Indexable c t | c -> t , t -> c
where
infixl 9 !
(!) :: c -> Int -> t
instance Indexable (Vector Double) Double
where
(!) = (@>)
instance Indexable (Vector Float) Float
where
(!) = (@>)
instance Indexable (Vector I) I
where
(!) = (@>)
instance Indexable (Vector Z) Z
where
(!) = (@>)
instance Indexable (Vector (Complex Double)) (Complex Double)
where
(!) = (@>)
instance Indexable (Vector (Complex Float)) (Complex Float)
where
(!) = (@>)
instance Element t => Indexable (Matrix t) (Vector t)
where
m!j = subVector (j*c) c (flatten m)
where
c = cols m
pairwiseD2 :: Matrix Double -> Matrix Double -> Matrix Double
pairwiseD2 x y | ok = x2 `outer` oy + ox `outer` y2 2* x <> trans y
| otherwise = error $ "pairwiseD2 with different number of columns: "
++ show (size x) ++ ", " ++ show (size y)
where
ox = one (rows x)
oy = one (rows y)
oc = one (cols x)
one k = konst 1 k
x2 = x * x <> oc
y2 = y * y <> oc
ok = cols x == cols y
rowOuters :: Matrix Double -> Matrix Double -> Matrix Double
rowOuters a b = a' * b'
where
a' = kronecker a (ones 1 (cols b))
b' = kronecker (ones 1 (cols a)) b
null1 :: Matrix R -> Vector R
null1 = last . toColumns . snd . rightSV
null1sym :: Herm R -> Vector R
null1sym = last . toColumns . snd . eigSH
infixl 0 ~!~
c ~!~ msg = when c (error msg)
formatSparse :: String -> String -> String -> Int -> Matrix Double -> String
formatSparse zeroI _zeroF sep _ (approxInt -> Just m) = format sep f m
where
f 0 = zeroI
f x = printf "%.0f" x
formatSparse zeroI zeroF sep n m = format sep f m
where
f x | abs (x::Double) < 2*peps = zeroI++zeroF
| abs (fromIntegral (round x::Int) x) / abs x < 2*peps
= printf ("%.0f."++replicate n ' ') x
| otherwise = printf ("%."++show n++"f") x
approxInt m
| norm_Inf (v vi) < 2*peps * norm_Inf v = Just (reshape (cols m) vi)
| otherwise = Nothing
where
v = flatten m
vi = roundVector v
dispDots n = putStr . formatSparse "." (replicate n ' ') " " n
dispBlanks n = putStr . formatSparse "" "" " " n
formatShort sep fmt maxr maxc m = auxm4
where
(rm,cm) = size m
(r1,r2,r3)
| rm <= maxr = (rm,0,0)
| otherwise = (maxr3,rmmaxr+1,2)
(c1,c2,c3)
| cm <= maxc = (cm,0,0)
| otherwise = (maxc3,cmmaxc+1,2)
[ [a,_,b]
,[_,_,_]
,[c,_,d]] = toBlocks [r1,r2,r3]
[c1,c2,c3] m
auxm = fromBlocks [[a,b],[c,d]]
auxm2
| cm > maxc = format "|" fmt auxm
| otherwise = format sep fmt auxm
auxm3
| cm > maxc = map (f . splitOn "|") (lines auxm2)
| otherwise = (lines auxm2)
f items = intercalate sep (take (maxc3) items) ++ " .. " ++
intercalate sep (drop (maxc3) items)
auxm4
| rm > maxr = unlines (take (maxr3) auxm3 ++ vsep : drop (maxr3) auxm3)
| otherwise = unlines auxm3
vsep = map g (head auxm3)
g '.' = ':'
g _ = ' '
dispShort :: Int -> Int -> Int -> Matrix Double -> IO ()
dispShort maxr maxc dec m =
printf "%dx%d\n%s" (rows m) (cols m) (formatShort " " fmt maxr maxc m)
where
fmt = printf ("%."++show dec ++"f")
block2x2 r c m = [[m11,m12],[m21,m22]]
where
m11 = m ?? (Take r, Take c)
m12 = m ?? (Take r, Drop c)
m21 = m ?? (Drop r, Take c)
m22 = m ?? (Drop r, Drop c)
block3x3 r nr c nc m = [[m ?? (er !! i, ec !! j) | j <- [0..2] ] | i <- [0..2] ]
where
er = [ Range 0 1 (r1), Range r 1 (r+nr1), Drop (nr+r) ]
ec = [ Range 0 1 (c1), Range c 1 (c+nc1), Drop (nc+c) ]
view1 :: Numeric t => Matrix t -> Maybe (View1 t)
view1 m
| rows m > 0 && cols m > 0 = Just (e, flatten m12, flatten m21 , m22)
| otherwise = Nothing
where
[[m11,m12],[m21,m22]] = block2x2 1 1 m
e = m11 `atIndex` (0, 0)
unView1 :: Numeric t => View1 t -> Matrix t
unView1 (e,r,c,m) = fromBlocks [[scalar e, asRow r],[asColumn c, m]]
type View1 t = (t, Vector t, Vector t, Matrix t)
foldMatrix :: Numeric t => (Matrix t -> Matrix t) -> (View1 t -> View1 t) -> (Matrix t -> Matrix t)
foldMatrix g f ( (f <$>) . view1 . g -> Just (e,r,c,m)) = unView1 (e, r, c, foldMatrix g f m)
foldMatrix _ _ m = m
swapMax k m
| rows m > 0 && j>0 = (j, m ?? (Pos (idxs swapped), All))
| otherwise = (0,m)
where
j = maxIndex $ abs (tr m ! k)
swapped = j:[1..j1] ++ 0:[j+1..rows m1]
down g a = foldMatrix g f a
where
f (e,r,c,m)
| e /= 0 = (1, r', 0, m outer c r')
| otherwise = error "singular!"
where
r' = r / scalar e
gaussElim_2
:: (Eq t, Fractional t, Num (Vector t), Numeric t)
=> Matrix t -> Matrix t -> Matrix t
gaussElim_2 a b = flipudrl r
where
flipudrl = flipud . fliprl
splitColsAt n = (takeColumns n &&& dropColumns n)
go f x y = splitColsAt (cols a) (down f $ x ||| y)
(a1,b1) = go (snd . swapMax 0) a b
( _, r) = go id (flipudrl $ a1) (flipudrl $ b1)
gaussElim_1
:: (Fractional t, Num (Vector t), Ord t, Indexable (Vector t) t, Numeric t)
=> Matrix t -> Matrix t -> Matrix t
gaussElim_1 x y = dropColumns (rows x) (flipud $ fromRows s2)
where
rs = toRows $ x ||| y
s1 = fromRows $ pivotDown (rows x) 0 rs
s2 = pivotUp (rows x1) (toRows $ flipud s1)
pivotDown t n xs
| t == n = []
| otherwise = y : pivotDown t (n+1) ys
where
y:ys = redu (pivot n xs)
pivot k = (const k &&& id)
. sortBy (flip compare `on` (abs. (!k)))
redu (k,x:zs)
| p == 0 = error "gauss: singular!"
| otherwise = u : map f zs
where
p = x!k
u = scale (recip (x!k)) x
f z = z scale (z!k) u
redu (_,[]) = []
pivotUp n xs
| n == 1 = []
| otherwise = y : pivotUp (n1) ys
where
y:ys = redu' (n,xs)
redu' (k,x:zs) = u : map f zs
where
u = x
f z = z scale (z!k) u
redu' (_,[]) = []
gaussElim a b = dropColumns (rows a) $ fst $ mutable gaussST (a ||| b)
gaussST (r,_) x = do
let n = r1
axpy m a i j = rowOper (AXPY a i j AllCols) m
swap m i j = rowOper (SWAP i j AllCols) m
scal m a i = rowOper (SCAL a (Row i) AllCols) m
forM_ [0..n] $ \i -> do
c <- maxIndex . abs . flatten <$> extractMatrix x (FromRow i) (Col i)
swap x i (i+c)
a <- readMatrix x i i
when (a == 0) $ error "singular!"
scal x (recip a) i
forM_ [i+1..n] $ \j -> do
b <- readMatrix x j i
axpy x (b) i j
forM_ [n,n1..1] $ \i -> do
forM_ [i1,i2..0] $ \j -> do
b <- readMatrix x j i
axpy x (b) i j
luST ok (r,_) x = do
let axpy m a i j = rowOper (AXPY a i j (FromCol (i+1))) m
swap m i j = rowOper (SWAP i j AllCols) m
p <- newUndefinedVector r
forM_ [0..r1] $ \i -> do
k <- maxIndex . abs . flatten <$> extractMatrix x (FromRow i) (Col i)
writeVector p i (k+i)
swap x i (i+k)
a <- readMatrix x i i
when (ok a) $ do
forM_ [i+1..r1] $ \j -> do
b <- (/a) <$> readMatrix x j i
axpy x (b) i j
writeMatrix x j i b
v <- unsafeFreezeVector p
return (toList v)
luPacked' x = LU m p
where
(m,p) = mutable (luST (magnit 0)) x
scalS a (Slice x r0 c0 nr nc) = rowOper (SCAL a (RowRange r0 (r0+nr1)) (ColRange c0 (c0+nc1))) x
view x k r = do
d <- readMatrix x k k
let rr = r1k
o = if k < r1 then 1 else 0
s = Slice x (k+1) (k+1) rr rr
u = Slice x k (k+1) o rr
l = Slice x (k+1) k rr o
return (d,u,l,s)
withVec r f = \s x -> do
p <- newUndefinedVector r
_ <- f s x p
v <- unsafeFreezeVector p
return v
luPacked'' m = (id *** toList) (mutable (withVec (rows m) lu2) m)
where
lu2 (r,_) x p = do
forM_ [0..r1] $ \k -> do
pivot x p k
(d,u,l,s) <- view x k r
when (magnit 0 d) $ do
scalS (recip d) l
gemmm 1 s (1) l u
pivot x p k = do
j <- maxIndex . abs . flatten <$> extractMatrix x (FromRow k) (Col k)
writeVector p k (j+k)
swap k (k+j)
where
swap i j = rowOper (SWAP i j AllCols) x
rowRange m = [0..rows m 1]
at k = Pos (idxs[k])
backSust' lup rhs = foldl' f (rhs?[]) (reverse ls)
where
ls = [ (d k , u k , b k) | k <- rowRange lup ]
where
d k = lup ?? (at k, at k)
u k = lup ?? (at k, Drop (k+1))
b k = rhs ?? (at k, All)
f x (d,u,b) = (b u<>x) / d
===
x
forwSust' lup rhs = foldl' f (rhs?[]) ls
where
ls = [ (l k , b k) | k <- rowRange lup ]
where
l k = lup ?? (at k, Take k)
b k = rhs ?? (at k, All)
f x (l,b) = x
===
(b l<>x)
luSolve'' (LU lup p) b = backSust' lup (forwSust' lup pb)
where
pb = b ?? (Pos (fixPerm' p), All)
forwSust lup rhs = fst $ mutable f rhs
where
f (r,c) x = do
l <- unsafeThawMatrix lup
let go k = gemmm 1 (Slice x k 0 1 c) (1) (Slice l k 0 1 k) (Slice x 0 0 k c)
mapM_ go [0..r1]
backSust lup rhs = fst $ mutable f rhs
where
f (r,c) m = do
l <- unsafeThawMatrix lup
let d k = recip (lup `atIndex` (k,k))
u k = Slice l k (k+1) 1 (r1k)
b k = Slice m k 0 1 c
x k = Slice m (k+1) 0 (r1k) c
scal k = rowOper (SCAL (d k) (Row k) AllCols) m
go k = gemmm 1 (b k) (1) (u k) (x k) >> scal k
mapM_ go [r1,r2..0]
luSolve' (LU lup p) b = backSust lup (forwSust lup pb)
where
pb = b ?? (Pos (fixPerm' p), All)
data MatrixView t b
= Elem t
| Block b b b b
deriving Show
viewBlock' r c m
| (rt,ct) == (1,1) = Elem (atM' m 0 0)
| otherwise = Block m11 m12 m21 m22
where
(rt,ct) = size m
m11 = subm (0,0) (r,c) m
m12 = subm (0,c) (r,ctc) m
m21 = subm (r,0) (rtr,c) m
m22 = subm (r,c) (rtr,ctc) m
subm = subMatrix
viewBlock m = viewBlock' n n m
where
n = rows m `div` 2
invershur (viewBlock -> Block a b c d) = fromBlocks [[a',b'],[c',d']]
where
r1 = invershur a
r2 = c <> r1
r3 = r1 <> b
r4 = c <> r3
r5 = r4d
r6 = invershur r5
b' = r3 <> r6
c' = r6 <> r2
r7 = r3 <> c'
a' = r1r7
d' = r6
invershur x = recip x
instance Testable (Matrix I) where
checkT _ = test
test :: (Bool, IO())
test = (and ok, return ())
where
m = (3><4) [1..12] :: Matrix I
r = (2><3) [1,2,3,4,3,2]
c = (3><2) [0,4,4,1,2,3]
p = (9><10) [0..89] :: Matrix I
ep = (2><3) [10,24,32,44,31,23]
md = fromInt m :: Matrix Double
ok = [ tr m <> m == toInt (tr md <> md)
, m <> tr m == toInt (md <> tr md)
, m ?? (Take 2, Take 3) == remap (asColumn (range 2)) (asRow (range 3)) m
, remap r (tr c) p == ep
, tr p ?? (PosCyc (idxs[5,13]), Pos (idxs[3,7,1])) == (2><3) [35,75,15,33,73,13]
]