#if __GLASGOW_HASKELL__ >= 708
module Internal.Static where
import GHC.TypeLits
import qualified Numeric.LinearAlgebra as LA
import Numeric.LinearAlgebra hiding (konst,size,R,C)
import Internal.Vector as D hiding (R,C)
import Internal.ST
import Data.Proxy(Proxy)
import Foreign.Storable(Storable)
import Text.Printf
type ℝ = Double
type ℂ = Complex Double
newtype Dim (n :: Nat) t = Dim t
deriving Show
lift1F
:: (c t -> c t)
-> Dim n (c t) -> Dim n (c t)
lift1F f (Dim v) = Dim (f v)
lift2F
:: (c t -> c t -> c t)
-> Dim n (c t) -> Dim n (c t) -> Dim n (c t)
lift2F f (Dim u) (Dim v) = Dim (f u v)
newtype R n = R (Dim n (Vector ℝ))
deriving (Num,Fractional,Floating)
newtype C n = C (Dim n (Vector ℂ))
deriving (Num,Fractional,Floating)
newtype L m n = L (Dim m (Dim n (Matrix ℝ)))
newtype M m n = M (Dim m (Dim n (Matrix ℂ)))
mkR :: Vector ℝ -> R n
mkR = R . Dim
mkC :: Vector ℂ -> C n
mkC = C . Dim
mkL :: Matrix ℝ -> L m n
mkL x = L (Dim (Dim x))
mkM :: Matrix ℂ -> M m n
mkM x = M (Dim (Dim x))
type V n t = Dim n (Vector t)
ud :: Dim n (Vector t) -> Vector t
ud (Dim v) = v
mkV :: forall (n :: Nat) t . t -> Dim n t
mkV = Dim
vconcat :: forall n m t . (KnownNat n, KnownNat m, Numeric t)
=> V n t -> V m t -> V (n+m) t
(ud -> u) `vconcat` (ud -> v) = mkV (vjoin [u', v'])
where
du = fromIntegral . natVal $ (undefined :: Proxy n)
dv = fromIntegral . natVal $ (undefined :: Proxy m)
u' | du > 1 && LA.size u == 1 = LA.konst (u D.@> 0) du
| otherwise = u
v' | dv > 1 && LA.size v == 1 = LA.konst (v D.@> 0) dv
| otherwise = v
gvec2 :: Storable t => t -> t -> V 2 t
gvec2 a b = mkV $ runSTVector $ do
v <- newUndefinedVector 2
writeVector v 0 a
writeVector v 1 b
return v
gvec3 :: Storable t => t -> t -> t -> V 3 t
gvec3 a b c = mkV $ runSTVector $ do
v <- newUndefinedVector 3
writeVector v 0 a
writeVector v 1 b
writeVector v 2 c
return v
gvec4 :: Storable t => t -> t -> t -> t -> V 4 t
gvec4 a b c d = mkV $ runSTVector $ do
v <- newUndefinedVector 4
writeVector v 0 a
writeVector v 1 b
writeVector v 2 c
writeVector v 3 d
return v
gvect :: forall n t . (Show t, KnownNat n, Numeric t) => String -> [t] -> V n t
gvect st xs'
| ok = mkV v
| not (null rest) && null (tail rest) = abort (show xs')
| not (null rest) = abort (init (show (xs++take 1 rest))++", ... ]")
| otherwise = abort (show xs)
where
(xs,rest) = splitAt d xs'
ok = LA.size v == d && null rest
v = LA.fromList xs
d = fromIntegral . natVal $ (undefined :: Proxy n)
abort info = error $ st++" "++show d++" can't be created from elements "++info
type GM m n t = Dim m (Dim n (Matrix t))
gmat :: forall m n t . (Show t, KnownNat m, KnownNat n, Numeric t) => String -> [t] -> GM m n t
gmat st xs'
| ok = Dim (Dim x)
| not (null rest) && null (tail rest) = abort (show xs')
| not (null rest) = abort (init (show (xs++take 1 rest))++", ... ]")
| otherwise = abort (show xs)
where
(xs,rest) = splitAt (m'*n') xs'
v = LA.fromList xs
x = reshape n' v
ok = null rest && ((n' == 0 && dim v == 0) || n'> 0 && (rem (LA.size v) n' == 0) && LA.size x == (m',n'))
m' = fromIntegral . natVal $ (undefined :: Proxy m) :: Int
n' = fromIntegral . natVal $ (undefined :: Proxy n) :: Int
abort info = error $ st ++" "++show m' ++ " " ++ show n'++" can't be created from elements " ++ info
class Num t => Sized t s d | s -> t, s -> d
where
konst :: t -> s
unwrap :: s -> d t
fromList :: [t] -> s
extract :: s -> d t
create :: d t -> Maybe s
size :: s -> IndexOf d
singleV v = LA.size v == 1
singleM m = rows m == 1 && cols m == 1
instance forall n. KnownNat n => Sized ℂ (C n) Vector
where
size _ = fromIntegral . natVal $ (undefined :: Proxy n)
konst x = mkC (LA.scalar x)
unwrap (C (Dim v)) = v
fromList xs = C (gvect "C" xs)
extract s@(unwrap -> v)
| singleV v = LA.konst (v!0) (size s)
| otherwise = v
create v
| LA.size v == size r = Just r
| otherwise = Nothing
where
r = mkC v :: C n
instance forall n. KnownNat n => Sized ℝ (R n) Vector
where
size _ = fromIntegral . natVal $ (undefined :: Proxy n)
konst x = mkR (LA.scalar x)
unwrap (R (Dim v)) = v
fromList xs = R (gvect "R" xs)
extract s@(unwrap -> v)
| singleV v = LA.konst (v!0) (size s)
| otherwise = v
create v
| LA.size v == size r = Just r
| otherwise = Nothing
where
r = mkR v :: R n
instance forall m n . (KnownNat m, KnownNat n) => Sized ℝ (L m n) Matrix
where
size _ = ((fromIntegral . natVal) (undefined :: Proxy m)
,(fromIntegral . natVal) (undefined :: Proxy n))
konst x = mkL (LA.scalar x)
fromList xs = L (gmat "L" xs)
unwrap (L (Dim (Dim m))) = m
extract (isDiag -> Just (z,y,(m',n'))) = diagRect z y m' n'
extract s@(unwrap -> a)
| singleM a = LA.konst (a `atIndex` (0,0)) (size s)
| otherwise = a
create x
| LA.size x == size r = Just r
| otherwise = Nothing
where
r = mkL x :: L m n
instance forall m n . (KnownNat m, KnownNat n) => Sized ℂ (M m n) Matrix
where
size _ = ((fromIntegral . natVal) (undefined :: Proxy m)
,(fromIntegral . natVal) (undefined :: Proxy n))
konst x = mkM (LA.scalar x)
fromList xs = M (gmat "M" xs)
unwrap (M (Dim (Dim m))) = m
extract (isDiagC -> Just (z,y,(m',n'))) = diagRect z y m' n'
extract s@(unwrap -> a)
| singleM a = LA.konst (a `atIndex` (0,0)) (size s)
| otherwise = a
create x
| LA.size x == size r = Just r
| otherwise = Nothing
where
r = mkM x :: M m n
instance (KnownNat n, KnownNat m) => Transposable (L m n) (L n m)
where
tr a@(isDiag -> Just _) = mkL (extract a)
tr (extract -> a) = mkL (tr a)
tr' = tr
instance (KnownNat n, KnownNat m) => Transposable (M m n) (M n m)
where
tr a@(isDiagC -> Just _) = mkM (extract a)
tr (extract -> a) = mkM (tr a)
tr' a@(isDiagC -> Just _) = mkM (extract a)
tr' (extract -> a) = mkM (tr' a)
isDiag :: forall m n . (KnownNat m, KnownNat n) => L m n -> Maybe (ℝ, Vector ℝ, (Int,Int))
isDiag (L x) = isDiagg x
isDiagC :: forall m n . (KnownNat m, KnownNat n) => M m n -> Maybe (ℂ, Vector ℂ, (Int,Int))
isDiagC (M x) = isDiagg x
isDiagg :: forall m n t . (Numeric t, KnownNat m, KnownNat n) => GM m n t -> Maybe (t, Vector t, (Int,Int))
isDiagg (Dim (Dim x))
| singleM x = Nothing
| rows x == 1 && m' > 1 || cols x == 1 && n' > 1 = Just (z,yz,(m',n'))
| otherwise = Nothing
where
m' = fromIntegral . natVal $ (undefined :: Proxy m) :: Int
n' = fromIntegral . natVal $ (undefined :: Proxy n) :: Int
v = flatten x
z = v `atIndex` 0
y = subVector 1 (LA.size v1) v
ny = LA.size y
zeros = LA.konst 0 (max 0 (min m' n' ny))
yz = vjoin [y,zeros]
instance forall n . KnownNat n => Show (R n)
where
show s@(R (Dim v))
| singleV v = "("++show (v!0)++" :: R "++show d++")"
| otherwise = "(vector"++ drop 8 (show v)++" :: R "++show d++")"
where
d = size s
instance forall n . KnownNat n => Show (C n)
where
show s@(C (Dim v))
| singleV v = "("++show (v!0)++" :: C "++show d++")"
| otherwise = "(vector"++ drop 8 (show v)++" :: C "++show d++")"
where
d = size s
instance forall m n . (KnownNat m, KnownNat n) => Show (L m n)
where
show (isDiag -> Just (z,y,(m',n'))) = printf "(diag %s %s :: L %d %d)" (show z) (drop 9 $ show y) m' n'
show s@(L (Dim (Dim x)))
| singleM x = printf "(%s :: L %d %d)" (show (x `atIndex` (0,0))) m' n'
| otherwise = "(matrix"++ dropWhile (/='\n') (show x)++" :: L "++show m'++" "++show n'++")"
where
(m',n') = size s
instance forall m n . (KnownNat m, KnownNat n) => Show (M m n)
where
show (isDiagC -> Just (z,y,(m',n'))) = printf "(diag %s %s :: M %d %d)" (show z) (drop 9 $ show y) m' n'
show s@(M (Dim (Dim x)))
| singleM x = printf "(%s :: M %d %d)" (show (x `atIndex` (0,0))) m' n'
| otherwise = "(matrix"++ dropWhile (/='\n') (show x)++" :: M "++show m'++" "++show n'++")"
where
(m',n') = size s
instance forall n t . (Num (Vector t), Numeric t )=> Num (Dim n (Vector t))
where
(+) = lift2F (+)
(*) = lift2F (*)
() = lift2F ()
abs = lift1F abs
signum = lift1F signum
negate = lift1F negate
fromInteger x = Dim (fromInteger x)
instance (Num (Vector t), Num (Matrix t), Fractional t, Numeric t) => Fractional (Dim n (Vector t))
where
fromRational x = Dim (fromRational x)
(/) = lift2F (/)
instance (Fractional t, Floating (Vector t), Numeric t) => Floating (Dim n (Vector t)) where
sin = lift1F sin
cos = lift1F cos
tan = lift1F tan
asin = lift1F asin
acos = lift1F acos
atan = lift1F atan
sinh = lift1F sinh
cosh = lift1F cosh
tanh = lift1F tanh
asinh = lift1F asinh
acosh = lift1F acosh
atanh = lift1F atanh
exp = lift1F exp
log = lift1F log
sqrt = lift1F sqrt
(**) = lift2F (**)
pi = Dim pi
instance (Num (Matrix t), Numeric t) => Num (Dim m (Dim n (Matrix t)))
where
(+) = (lift2F . lift2F) (+)
(*) = (lift2F . lift2F) (*)
() = (lift2F . lift2F) ()
abs = (lift1F . lift1F) abs
signum = (lift1F . lift1F) signum
negate = (lift1F . lift1F) negate
fromInteger x = Dim (Dim (fromInteger x))
instance (Num (Vector t), Num (Matrix t), Fractional t, Numeric t) => Fractional (Dim m (Dim n (Matrix t)))
where
fromRational x = Dim (Dim (fromRational x))
(/) = (lift2F.lift2F) (/)
instance (Num (Vector t), Floating (Matrix t), Fractional t, Numeric t) => Floating (Dim m (Dim n (Matrix t))) where
sin = (lift1F . lift1F) sin
cos = (lift1F . lift1F) cos
tan = (lift1F . lift1F) tan
asin = (lift1F . lift1F) asin
acos = (lift1F . lift1F) acos
atan = (lift1F . lift1F) atan
sinh = (lift1F . lift1F) sinh
cosh = (lift1F . lift1F) cosh
tanh = (lift1F . lift1F) tanh
asinh = (lift1F . lift1F) asinh
acosh = (lift1F . lift1F) acosh
atanh = (lift1F . lift1F) atanh
exp = (lift1F . lift1F) exp
log = (lift1F . lift1F) log
sqrt = (lift1F . lift1F) sqrt
(**) = (lift2F . lift2F) (**)
pi = Dim (Dim pi)
adaptDiag f a@(isDiag -> Just _) b | isFull b = f (mkL (extract a)) b
adaptDiag f a b@(isDiag -> Just _) | isFull a = f a (mkL (extract b))
adaptDiag f a b = f a b
isFull m = isDiag m == Nothing && not (singleM (unwrap m))
lift1L f (L v) = L (f v)
lift2L f (L a) (L b) = L (f a b)
lift2LD f = adaptDiag (lift2L f)
instance (KnownNat n, KnownNat m) => Num (L n m)
where
(+) = lift2LD (+)
(*) = lift2LD (*)
() = lift2LD ()
abs = lift1L abs
signum = lift1L signum
negate = lift1L negate
fromInteger = L . Dim . Dim . fromInteger
instance (KnownNat n, KnownNat m) => Fractional (L n m)
where
fromRational = L . Dim . Dim . fromRational
(/) = lift2LD (/)
instance (KnownNat n, KnownNat m) => Floating (L n m) where
sin = lift1L sin
cos = lift1L cos
tan = lift1L tan
asin = lift1L asin
acos = lift1L acos
atan = lift1L atan
sinh = lift1L sinh
cosh = lift1L cosh
tanh = lift1L tanh
asinh = lift1L asinh
acosh = lift1L acosh
atanh = lift1L atanh
exp = lift1L exp
log = lift1L log
sqrt = lift1L sqrt
(**) = lift2LD (**)
pi = konst pi
adaptDiagC f a@(isDiagC -> Just _) b | isFullC b = f (mkM (extract a)) b
adaptDiagC f a b@(isDiagC -> Just _) | isFullC a = f a (mkM (extract b))
adaptDiagC f a b = f a b
isFullC m = isDiagC m == Nothing && not (singleM (unwrap m))
lift1M f (M v) = M (f v)
lift2M f (M a) (M b) = M (f a b)
lift2MD f = adaptDiagC (lift2M f)
instance (KnownNat n, KnownNat m) => Num (M n m)
where
(+) = lift2MD (+)
(*) = lift2MD (*)
() = lift2MD ()
abs = lift1M abs
signum = lift1M signum
negate = lift1M negate
fromInteger = M . Dim . Dim . fromInteger
instance (KnownNat n, KnownNat m) => Fractional (M n m)
where
fromRational = M . Dim . Dim . fromRational
(/) = lift2MD (/)
instance (KnownNat n, KnownNat m) => Floating (M n m) where
sin = lift1M sin
cos = lift1M cos
tan = lift1M tan
asin = lift1M asin
acos = lift1M acos
atan = lift1M atan
sinh = lift1M sinh
cosh = lift1M cosh
tanh = lift1M tanh
asinh = lift1M asinh
acosh = lift1M acosh
atanh = lift1M atanh
exp = lift1M exp
log = lift1M log
sqrt = lift1M sqrt
(**) = lift2MD (**)
pi = M pi
class Disp t
where
disp :: Int -> t -> IO ()
instance (KnownNat m, KnownNat n) => Disp (L m n)
where
disp n x = do
let a = extract x
let su = LA.dispf n a
printf "L %d %d" (rows a) (cols a) >> putStr (dropWhile (/='\n') $ su)
instance (KnownNat m, KnownNat n) => Disp (M m n)
where
disp n x = do
let a = extract x
let su = LA.dispcf n a
printf "M %d %d" (rows a) (cols a) >> putStr (dropWhile (/='\n') $ su)
instance KnownNat n => Disp (R n)
where
disp n v = do
let su = LA.dispf n (asRow $ extract v)
putStr "R " >> putStr (tail . dropWhile (/='x') $ su)
instance KnownNat n => Disp (C n)
where
disp n v = do
let su = LA.dispcf n (asRow $ extract v)
putStr "C " >> putStr (tail . dropWhile (/='x') $ su)
#else
module Numeric.LinearAlgebra.Static.Internal where
#endif