module Internal.Modular(
Mod, type (./.)
) where
import Internal.Vector
import Internal.Matrix hiding (size)
import Internal.Numeric
import Internal.Element
import Internal.Container
import Internal.Vectorized (prodI,sumI,prodL,sumL)
import Internal.LAPACK (multiplyI, multiplyL)
import Internal.Algorithms(luFact,LU(..))
import Internal.Util(Normed(..),Indexable(..),
gaussElim, gaussElim_1, gaussElim_2,
luST, luSolve', luPacked', magnit, invershur)
import Internal.ST(mutable)
import GHC.TypeLits
import Data.Proxy(Proxy)
import Foreign.ForeignPtr(castForeignPtr)
import Foreign.Storable
import Data.Ratio
import Data.Complex
import Control.DeepSeq ( NFData(..) )
newtype Mod (n :: Nat) t = Mod {unMod:: t}
deriving (Storable)
instance (NFData t) => NFData (Mod n t)
where
rnf (Mod x) = rnf x
infixr 5 ./.
type (./.) x n = Mod n x
instance (Integral t, Enum t, KnownNat m) => Enum (Mod m t)
where
toEnum = l0 (\m x -> fromIntegral $ x `mod` (fromIntegral m))
fromEnum = fromIntegral . unMod
instance (Eq t, KnownNat m) => Eq (Mod m t)
where
a == b = (unMod a) == (unMod b)
instance (Ord t, KnownNat m) => Ord (Mod m t)
where
compare a b = compare (unMod a) (unMod b)
instance (Integral t, KnownNat m, Integral (Mod m t)) => Real (Mod m t)
where
toRational x = toInteger x % 1
instance (Integral t, KnownNat m, Num (Mod m t)) => Integral (Mod m t)
where
toInteger = toInteger . unMod
quotRem a b = (Mod q, Mod r)
where
(q,r) = quotRem (unMod a) (unMod b)
instance (Show (Mod m t), Num (Mod m t), Eq t, KnownNat m) => Fractional (Mod m t)
where
recip x
| x*r == 1 = r
| otherwise = error $ show x ++" does not have a multiplicative inverse mod "++show m'
where
r = x^(m'2 :: Integer)
m' = fromIntegral . natVal $ (undefined :: Proxy m)
fromRational x = fromInteger (numerator x) / fromInteger (denominator x)
l2 :: forall m a b c. (Num c, KnownNat m) => (c -> a -> b -> c) -> Mod m a -> Mod m b -> Mod m c
l2 f (Mod u) (Mod v) = Mod (f m' u v)
where
m' = fromIntegral . natVal $ (undefined :: Proxy m)
l1 :: forall m a b . (Num b, KnownNat m) => (b -> a -> b) -> Mod m a -> Mod m b
l1 f (Mod u) = Mod (f m' u)
where
m' = fromIntegral . natVal $ (undefined :: Proxy m)
l0 :: forall m a b . (Num b, KnownNat m) => (b -> a -> b) -> a -> Mod m b
l0 f u = Mod (f m' u)
where
m' = fromIntegral . natVal $ (undefined :: Proxy m)
instance Show t => Show (Mod n t)
where
show = show . unMod
instance forall n t . (Integral t, KnownNat n) => Num (Mod n t)
where
(+) = l2 (\m a b -> (a + b) `mod` (fromIntegral m))
(*) = l2 (\m a b -> (a * b) `mod` (fromIntegral m))
() = l2 (\m a b -> (a b) `mod` (fromIntegral m))
abs = l1 (const abs)
signum = l1 (const signum)
fromInteger = l0 (\m x -> fromInteger x `mod` (fromIntegral m))
instance KnownNat m => Element (Mod m I)
where
constantD x n = i2f (constantD (unMod x) n)
extractR ord m mi is mj js = i2fM <$> extractR ord (f2iM m) mi is mj js
setRect i j m x = setRect i j (f2iM m) (f2iM x)
sortI = sortI . f2i
sortV = i2f . sortV . f2i
compareV u v = compareV (f2i u) (f2i v)
selectV c l e g = i2f (selectV c (f2i l) (f2i e) (f2i g))
remapM i j m = i2fM (remap i j (f2iM m))
rowOp c a i1 i2 j1 j2 x = rowOpAux (c_rowOpMI m') c (unMod a) i1 i2 j1 j2 (f2iM x)
where
m' = fromIntegral . natVal $ (undefined :: Proxy m)
gemm u a b c = gemmg (c_gemmMI m') (f2i u) (f2iM a) (f2iM b) (f2iM c)
where
m' = fromIntegral . natVal $ (undefined :: Proxy m)
instance KnownNat m => Element (Mod m Z)
where
constantD x n = i2f (constantD (unMod x) n)
extractR ord m mi is mj js = i2fM <$> extractR ord (f2iM m) mi is mj js
setRect i j m x = setRect i j (f2iM m) (f2iM x)
sortI = sortI . f2i
sortV = i2f . sortV . f2i
compareV u v = compareV (f2i u) (f2i v)
selectV c l e g = i2f (selectV c (f2i l) (f2i e) (f2i g))
remapM i j m = i2fM (remap i j (f2iM m))
rowOp c a i1 i2 j1 j2 x = rowOpAux (c_rowOpML m') c (unMod a) i1 i2 j1 j2 (f2iM x)
where
m' = fromIntegral . natVal $ (undefined :: Proxy m)
gemm u a b c = gemmg (c_gemmML m') (f2i u) (f2iM a) (f2iM b) (f2iM c)
where
m' = fromIntegral . natVal $ (undefined :: Proxy m)
instance forall m . KnownNat m => CTrans (Mod m I)
instance forall m . KnownNat m => CTrans (Mod m Z)
instance forall m . KnownNat m => Container Vector (Mod m I)
where
conj' = id
size' = dim
scale' s x = vmod (scale (unMod s) (f2i x))
addConstant c x = vmod (addConstant (unMod c) (f2i x))
add' a b = vmod (add' (f2i a) (f2i b))
sub a b = vmod (sub (f2i a) (f2i b))
mul a b = vmod (mul (f2i a) (f2i b))
equal u v = equal (f2i u) (f2i v)
scalar' x = fromList [x]
konst' x = i2f . konst (unMod x)
build' n f = build n (fromIntegral . f)
cmap' = mapVector
atIndex' x k = fromIntegral (atIndex (f2i x) k)
minIndex' = minIndex . f2i
maxIndex' = maxIndex . f2i
minElement' = Mod . minElement . f2i
maxElement' = Mod . maxElement . f2i
sumElements' = fromIntegral . sumI m' . f2i
where
m' = fromIntegral . natVal $ (undefined :: Proxy m)
prodElements' = fromIntegral . prodI m' . f2i
where
m' = fromIntegral . natVal $ (undefined :: Proxy m)
step' = i2f . step . f2i
find' = findV
assoc' = assocV
accum' = accumV
ccompare' a b = ccompare (f2i a) (f2i b)
cselect' c l e g = i2f $ cselect c (f2i l) (f2i e) (f2i g)
scaleRecip s x = scale' s (cmap recip x)
divide x y = mul x (cmap recip y)
arctan2' = undefined
cmod' m = vmod . cmod' (unMod m) . f2i
fromInt' = vmod
toInt' = f2i
fromZ' = vmod . fromZ'
toZ' = toZ' . f2i
instance forall m . KnownNat m => Container Vector (Mod m Z)
where
conj' = id
size' = dim
scale' s x = vmod (scale (unMod s) (f2i x))
addConstant c x = vmod (addConstant (unMod c) (f2i x))
add' a b = vmod (add' (f2i a) (f2i b))
sub a b = vmod (sub (f2i a) (f2i b))
mul a b = vmod (mul (f2i a) (f2i b))
equal u v = equal (f2i u) (f2i v)
scalar' x = fromList [x]
konst' x = i2f . konst (unMod x)
build' n f = build n (fromIntegral . f)
cmap' = mapVector
atIndex' x k = fromIntegral (atIndex (f2i x) k)
minIndex' = minIndex . f2i
maxIndex' = maxIndex . f2i
minElement' = Mod . minElement . f2i
maxElement' = Mod . maxElement . f2i
sumElements' = fromIntegral . sumL m' . f2i
where
m' = fromIntegral . natVal $ (undefined :: Proxy m)
prodElements' = fromIntegral . prodL m' . f2i
where
m' = fromIntegral . natVal $ (undefined :: Proxy m)
step' = i2f . step . f2i
find' = findV
assoc' = assocV
accum' = accumV
ccompare' a b = ccompare (f2i a) (f2i b)
cselect' c l e g = i2f $ cselect c (f2i l) (f2i e) (f2i g)
scaleRecip s x = scale' s (cmap recip x)
divide x y = mul x (cmap recip y)
arctan2' = undefined
cmod' m = vmod . cmod' (unMod m) . f2i
fromInt' = vmod . fromInt'
toInt' = toInt . f2i
fromZ' = vmod
toZ' = f2i
instance (Storable t, Indexable (Vector t) t) => Indexable (Vector (Mod m t)) (Mod m t)
where
(!) = (@>)
type instance RealOf (Mod n I) = I
type instance RealOf (Mod n Z) = Z
instance KnownNat m => Product (Mod m I) where
norm2 = undefined
absSum = undefined
norm1 = undefined
normInf = undefined
multiply = lift2m (multiplyI m')
where
m' = fromIntegral . natVal $ (undefined :: Proxy m)
instance KnownNat m => Product (Mod m Z) where
norm2 = undefined
absSum = undefined
norm1 = undefined
normInf = undefined
multiply = lift2m (multiplyL m')
where
m' = fromIntegral . natVal $ (undefined :: Proxy m)
instance KnownNat m => Normed (Vector (Mod m I))
where
norm_0 = norm_0 . toInt
norm_1 = norm_1 . toInt
norm_2 = norm_2 . toInt
norm_Inf = norm_Inf . toInt
instance KnownNat m => Normed (Vector (Mod m Z))
where
norm_0 = norm_0 . toZ
norm_1 = norm_1 . toZ
norm_2 = norm_2 . toZ
norm_Inf = norm_Inf . toZ
instance KnownNat m => Numeric (Mod m I)
instance KnownNat m => Numeric (Mod m Z)
i2f :: Storable t => Vector t -> Vector (Mod n t)
i2f v = unsafeFromForeignPtr (castForeignPtr fp) (i) (n)
where (fp,i,n) = unsafeToForeignPtr v
f2i :: Storable t => Vector (Mod n t) -> Vector t
f2i v = unsafeFromForeignPtr (castForeignPtr fp) (i) (n)
where (fp,i,n) = unsafeToForeignPtr v
f2iM :: (Element t, Element (Mod n t)) => Matrix (Mod n t) -> Matrix t
f2iM m = m { xdat = f2i (xdat m) }
i2fM :: (Element t, Element (Mod n t)) => Matrix t -> Matrix (Mod n t)
i2fM m = m { xdat = i2f (xdat m) }
vmod :: forall m t. (KnownNat m, Storable t, Integral t, Numeric t) => Vector t -> Vector (Mod m t)
vmod = i2f . cmod' m'
where
m' = fromIntegral . natVal $ (undefined :: Proxy m)
lift1 f a = vmod (f (f2i a))
lift2 f a b = vmod (f (f2i a) (f2i b))
lift2m f a b = liftMatrix vmod (f (f2iM a) (f2iM b))
instance forall m . KnownNat m => Num (Vector (Mod m I))
where
(+) = lift2 (+)
(*) = lift2 (*)
() = lift2 ()
abs = lift1 abs
signum = lift1 signum
negate = lift1 negate
fromInteger x = fromInt (fromInteger x)
instance forall m . KnownNat m => Num (Vector (Mod m Z))
where
(+) = lift2 (+)
(*) = lift2 (*)
() = lift2 ()
abs = lift1 abs
signum = lift1 signum
negate = lift1 negate
fromInteger x = fromZ (fromInteger x)
instance (KnownNat m) => Testable (Matrix (Mod m I))
where
checkT _ = test
test = (ok, info)
where
v = fromList [3,5,75] :: Vector (Mod 11 I)
m = (3><3) [1..] :: Matrix (Mod 11 I)
a = (3><3) [1,2 , 3
,4,5 , 6
,0,10,3] :: Matrix I
b = (3><2) [0..] :: Matrix I
am = fromInt a :: Matrix (Mod 13 I)
bm = fromInt b :: Matrix (Mod 13 I)
ad = fromInt a :: Matrix Double
bd = fromInt b :: Matrix Double
g = (3><3) (repeat (40000)) :: Matrix I
gm = fromInt g :: Matrix (Mod 100000 I)
lg = (3><3) (repeat (3*10^(9::Int))) :: Matrix Z
lgm = fromZ lg :: Matrix (Mod 10000000000 Z)
gen n = diagRect 1 (konst 5 n) n n :: Numeric t => Matrix t
rgen n = gen n :: Matrix R
cgen n = complex (rgen n) + fliprl (complex (rgen n)) * scalar (0:+1) :: Matrix C
sgen n = single (cgen n)
checkGen x = norm_Inf $ flatten $ invg x <> x ident (rows x)
invg t = gaussElim t (ident (rows t))
checkLU okf t = norm_Inf $ flatten (l <> u <> p t)
where
(l,u,p,_) = luFact (LU x' p')
where
(x',p') = mutable (luST okf) t
checkSolve aa = norm_Inf $ flatten (aa <> x bb)
where
bb = flipud aa
x = luSolve' (luPacked' aa) bb
tmm = diagRect 1 (fromList [2..6]) 5 5 :: Matrix (Mod 19 I)
info = do
print v
print m
print (tr m)
print $ v+v
print $ m+m
print $ m <> m
print $ m #> v
print $ am <> gaussElim am bm bm
print $ ad <> gaussElim ad bd bd
print g
print $ g <> g
print gm
print $ gm <> gm
print lg
print $ lg <> lg
print lgm
print $ lgm <> lgm
putStrLn "checkGen"
print (checkGen (gen 5 :: Matrix R))
print (checkGen (gen 5 :: Matrix Float))
print (checkGen (cgen 5 :: Matrix C))
print (checkGen (sgen 5 :: Matrix (Complex Float)))
print (invg (gen 5) :: Matrix (Mod 7 I))
print (invg (gen 5) :: Matrix (Mod 7 Z))
print $ mutable (luST (const True)) (gen 5 :: Matrix R)
print $ mutable (luST (const True)) (gen 5 :: Matrix (Mod 11 Z))
putStrLn "checkLU"
print $ checkLU (magnit 0) (gen 5 :: Matrix R)
print $ checkLU (magnit 0) (gen 5 :: Matrix Float)
print $ checkLU (magnit 0) (cgen 5 :: Matrix C)
print $ checkLU (magnit 0) (sgen 5 :: Matrix (Complex Float))
print $ checkLU (magnit 0) (gen 5 :: Matrix (Mod 7 I))
print $ checkLU (magnit 0) (gen 5 :: Matrix (Mod 7 Z))
putStrLn "checkSolve"
print $ checkSolve (gen 5 :: Matrix R)
print $ checkSolve (gen 5 :: Matrix Float)
print $ checkSolve (cgen 5 :: Matrix C)
print $ checkSolve (sgen 5 :: Matrix (Complex Float))
print $ checkSolve (gen 5 :: Matrix (Mod 7 I))
print $ checkSolve (gen 5 :: Matrix (Mod 7 Z))
putStrLn "luSolve'"
print $ luSolve' (luPacked' tmm) (ident (rows tmm))
print $ invershur tmm
ok = and
[ toInt (m #> v) == cmod 11 (toInt m #> toInt v )
, am <> gaussElim_1 am bm == bm
, am <> gaussElim_2 am bm == bm
, am <> gaussElim am bm == bm
, (checkGen (gen 5 :: Matrix R)) < 1E-15
, (checkGen (gen 5 :: Matrix Float)) < 2E-7
, (checkGen (cgen 5 :: Matrix C)) < 1E-15
, (checkGen (sgen 5 :: Matrix (Complex Float))) < 3E-7
, (checkGen (gen 5 :: Matrix (Mod 7 I))) == 0
, (checkGen (gen 5 :: Matrix (Mod 7 Z))) == 0
, (checkLU (magnit 1E-10) (gen 5 :: Matrix R)) < 2E-15
, (checkLU (magnit 1E-5) (gen 5 :: Matrix Float)) < 1E-6
, (checkLU (magnit 1E-10) (cgen 5 :: Matrix C)) < 5E-15
, (checkLU (magnit 1E-5) (sgen 5 :: Matrix (Complex Float))) < 1E-6
, (checkLU (magnit 0) (gen 5 :: Matrix (Mod 7 I))) == 0
, (checkLU (magnit 0) (gen 5 :: Matrix (Mod 7 Z))) == 0
, checkSolve (gen 5 :: Matrix R) < 2E-15
, checkSolve (gen 5 :: Matrix Float) < 1E-6
, checkSolve (cgen 5 :: Matrix C) < 4E-15
, checkSolve (sgen 5 :: Matrix (Complex Float)) < 1E-6
, checkSolve (gen 5 :: Matrix (Mod 7 I)) == 0
, checkSolve (gen 5 :: Matrix (Mod 7 Z)) == 0
, prodElements (konst (9:: Mod 10 I) (12::Int)) == product (replicate 12 (9:: Mod 10 I))
, gm <> gm == konst 0 (3,3)
, lgm <> lgm == konst 0 (3,3)
, invershur tmm == luSolve' (luPacked' tmm) (ident (rows tmm))
, luSolve' (luPacked' (tr $ ident 5 :: Matrix (I ./. 2))) (ident 5) == ident 5
]