module Data.Sequence.Util where

import Data.Sequence(Seq, ViewL(..),ViewR(..))
import qualified Data.Sequence as S

--------------------------------------------------------------------------------

-- | Get the index h such that everything strictly smaller than h has: p i =
-- False, and all i >= h, we have p h = True
--
-- returns Nothing if no element satisfies p
--
-- running time: \(O(\log^2 n + T*\log n)\), where \(T\) is the time to execute the
-- predicate.
binarySearchSeq     :: (a -> Bool) -> Seq a -> Maybe Int
binarySearchSeq p s = case S.viewr s of
                       EmptyR                 -> Nothing
                       (_ :> x)   | p x       -> Just $ case S.viewl s of
                         (y :< _) | p y          -> 0
                         _                       -> binarySearch p' 0 u
                                  | otherwise -> Nothing
  where
    p' = p . S.index s
    u  = S.length s - 1


-- | Partition the seq s given a monotone predicate p into (xs,ys) such that
--
-- all elements in xs do *not* satisfy the predicate p
-- all elements in ys do       satisfy the predicate p
--
-- all elements in s occur in either xs or ys.
--
-- running time: \(O(\log^2 n + T*\log n)\), where \(T\) is the time to execute the
-- predicate.
splitMonotone     :: (a -> Bool) -> Seq a -> (Seq a, Seq a)
splitMonotone p s = case binarySearchSeq p s of
                      Nothing -> (s,S.empty)
                      Just i  -> S.splitAt i s


-- | Given a monotonic predicate p, a lower bound l, and an upper bound u, with:
--  p l = False
--  p u = True
--  l < u.
--
-- Get the index h such that everything strictly smaller than h has: p i =
-- False, and all i >= h, we have p h = True
--
-- running time: \(O(\log(u - l))\)
{-# SPECIALIZE binarySearch :: (Int -> Bool) -> Int -> Int -> Int #-}
binarySearch       :: Integral a => (a -> Bool) -> a -> a -> a
binarySearch p l u = let d = u - l
                         m = l + (d `div` 2)
                     in if d == 1 then u else
                          if p m then binarySearch p l m
                                 else binarySearch p m u