module Data.Permutation where
import Control.Lens
import Control.Monad (forM)
import Control.Monad.ST (runST)
import qualified Data.Foldable as F
import Data.Maybe (catMaybes)
import qualified Data.Traversable as T
import qualified Data.Vector as V
import qualified Data.Vector.Generic as GV
import qualified Data.Vector.Unboxed as UV
import qualified Data.Vector.Unboxed.Mutable as UMV
type Orbit a = V.Vector a
data Permutation a = Permutation { _orbits :: V.Vector (Orbit a)
, _indexes :: UV.Vector (Int,Int)
}
deriving (Show,Eq)
makeLenses ''Permutation
instance Functor Permutation where
fmap = T.fmapDefault
instance F.Foldable Permutation where
foldMap = T.foldMapDefault
instance T.Traversable Permutation where
traverse f (Permutation os is) = flip Permutation is <$> T.traverse (T.traverse f) os
elems :: Permutation a -> V.Vector a
elems = GV.concat . GV.toList . _orbits
size :: Permutation a -> Int
size perm = GV.length (perm^.indexes)
cycleOf :: Enum a => Permutation a -> a -> Orbit a
cycleOf perm x = perm^.orbits.ix' (perm^.indexes.ix' (fromEnum x)._1)
next :: GV.Vector v a => v a -> Int -> a
next v i = let n = GV.length v in v GV.! ((i+1) `mod` n)
lookupIdx :: Enum a => Permutation a -> a -> (Int,Int)
lookupIdx perm x = perm^.indexes.ix' (fromEnum x)
apply :: Enum a => Permutation a -> a -> a
apply perm x = let (c,i) = lookupIdx perm x
in next (perm^.orbits.ix' c) i
orbitFrom :: Eq a => a -> (a -> a) -> [a]
orbitFrom s p = s : (takeWhile (/= s) . tail $ iterate p s)
cycleRep :: (GV.Vector v a, Enum a, Eq a) => v a -> (a -> a) -> Permutation a
cycleRep v perm = toCycleRep n $ runST $ do
bv <- UMV.replicate n False
morbs <- forM [0..(n 1)] $ \i -> do
m <- UMV.read bv (fromEnum $ v GV.! i)
if m then pure Nothing
else do
let xs = orbitFrom (v GV.! i) perm
markAll bv $ map fromEnum xs
pure . Just $ xs
pure . catMaybes $ morbs
where
n = GV.length v
mark bv i = UMV.write bv i True
markAll bv = mapM_ (mark bv)
toCycleRep :: Enum a => Int -> [[a]] -> Permutation a
toCycleRep n os = Permutation (V.fromList . map V.fromList $ os) (genIndexes n os)
genIndexes :: Enum a => Int -> [[a]] -> UV.Vector (Int,Int)
genIndexes n os = UV.create $ do
v <- UMV.new n
mapM_ (uncurry $ UMV.write v) ixes'
pure v
where
f i c = zipWith (\x j -> (fromEnum x,(i,j))) c [0..]
ixes' = concat $ zipWith f [0..] os
ix' :: (GV.Vector v a, Index (v a) ~ Int, IxValue (v a) ~ a, Ixed (v a))
=> Int -> Lens' (v a) a
ix' i = singular (ix i)