GRACeFUL CPL-backend

User Manual

Table of contents

Table of contents

1. Description
Not yet supported

2. Installation

Requirements
Installation steps
3. Structure: Defining a MiniZinc model
Declaring a variable
Assigning to a variable
Setting a constraint

The solve item

User defined operations

Output item
Importing a file

Readability and documentation

4. Expr for expressions
Built-in scalar values

Built-in compound values

Operators
Call expressions

Generator calls

Conditionals
Let expressions

5. Representing and running a model
Appendix
Unary operators

Binary operators
Calls




1. Description

This module links functional programming in Haskell with constraint programming in
MiniZinc. An abstract syntax tree (“AST” now on) of the MiniZinc language makes it
possible to define a constraint satisfaction problem in Haskell. MiniZinc or choco3 takes
over to solve the model and a parser parses the solution(s) back into Haskell values. In detail,
the generated MiniZinc code first gets translated to FlatZinc code and then solved. The
output of a solution follows the conventions of the G12/FD solver. The parser of this module
is based on these conventions as well. Although the output item is supported by the Haskell
AST, it is strongly recommended to be used only for testing and debugging purposes.

A pretty-printer is provided, which prints the MiniZinc translation of the model. In
addition., the user can choose to return one or all solutions. This module works with
MiniZinc and, apart from MiniZinc's built-in solvers, it can use choco3 as well.

Example models are included and can be printed with the printModel function and run
with the testModel function. Read §5 or the comments in MZinHaskell.hs for more
details.

Not yet supported

@ Annotations
@ Solving set constraint problems with the choco3 solver
@ Returning first n solutions

2. Installation

Requirements

This module depends on the software indicated in the list below:
® GHC?7103

@® MiniZinc 2.0

@ JDK 8+ (only if choco3 will be used)



Installation steps

Download

Download the source code available on BitBucket:
https://bitbucket.org/graceful team/graceful repos

Configure

1. You will need to provide the installation directory of MiniZinc. Depending on your
OS, follow the instructions in CPL-backend/WindowsAux.hs or in
CPL-backend/LinuxAux.hs.

2. You will also need to import module WindowsAux or LinuxAux depending on your
OS. Make the appropriate changes in MZinHaskell.hs, as indicated in the
comments.

3. Structure: Defining a MiniZinc model

A MiniZinc model consists of multiple items. In this section we describe the Haskell
representation of each kind of items that MiniZinc syntactically consists of. The
representation of a MiniZinc model in Haskell is just a list of items. In Haskell words, type
MZModel = [Item]. The code below shows the Haskell representation for each MiniZinc
item.

Syntax:

data Item = Comment String
| Include Filename

| Declare Inst VarType Ident (Maybe Expr)

| Assign Ident Expr

| Constraint Expr

| Solve Solve

| Ooutput Expr

| Pred Ident [Param] (Maybe Expr)

| Test Ident [Param] (Maybe Expr)

| Function TypelInst Ident [Param] (Maybe Expr)
| Annotation

| Empty



https://bitbucket.org/graceful_team/graceful_repos

Declaring a variable
The following item constructor is used to declare a variable in the AST of MiniZinc.

Syntax:
Declare TypelInst Ident (Maybe Expr)

A Haskell string for the name of the MiniZinc variable substitutes Ident. The last
argument of the Declare constructor is a Haskell optional, since MiniZinc provides the
choice to initialize a variable on declaration or later.

Type-Insts
As in MiniZinc’s terminology, a type-inst of a variable is its inst and its type. In our AST
we define a type-inst as a pair of an inst and a type.
Syntax:
type Typelnst = (Inst, VarType)

Insts

All variable declarations in the AST must have an explicit inst. An Inst can either be
Par (translates to “par”) or Dec (translates to “var”).

Syntax:
data Inst = Par | Dec

Variable types

The AST supports all types that MiniZinc supports.

Syntax:

data VarType = Bool
| Int

| Float

| String

| Set VvarType

| Array [VarType] Typelnst

| List Typelnst




Opt VarType
Range Expr Expr
Elems [Expr]
AOS Ident

Any

Built-in scalar types

Bool, Int, Float and String correspond to the built-in scalar types of MiniZinc.

Built-in compound types

Set VarType is used to declare a set of values. The argument of the Set constructor
refers to the type of the elements of the set.

Example:

Haskell AST: Set Int

MiniZinc: set of int

Array [VarType] TypeInst is used to declare an array. Its first argument represents
the indexes of the array. Multidimensional arrays are supported, where each element of the
list corresponds to a dimension of the array. The second argument of the Array constructor
corresponds to the type-inst of the array’s elements. For an “array[int] of ..” one can use the
List TypeInst constructor, as a list in MiniZinc is an abbreviation for an int-indexed
array.

With Opt VarType one can declare an optional type. The syntax is similar to that of the
Set constructor.

Constrained types

The Range Expr Expr constructor defines an integer range from the expression of the
first argument to that of the second argument.

Example:

Haskell AST: Range (IConst 1) (IConst 3)

MiniZinc: 1..3



Use Elems [Expr] to restrict the domain of a variable to the set of the values in the list

[Expr].
One can also restrict the domain of the declared variable to a set parameter by using A0S

Ident. The name of the set parameter replaces Ident.

Assigning to a variable

Syntax:
Assign Ident Expr

A string with the name of the variable goes in place of Ident and an expression goes in

place of Expr. The syntax of an Expr is explained in section 4.

Example:

Haskell AST: Assign “myvar” (BConst True)

MiniZinc: Myvar = true;

Setting a constraint

Syntax:

Constraint Expr

where an expression in the form of the AST replaces Expr.

Example:

Haskell AST: Constraint (Bi Neq (Var "y") (Var "v"))

MiniZinc: constraint y != v;



The solve item
The syntax below is used to define a solve item in the MiniZinc model.

Syntax:

Solve Solve

The naming convention here might be confusing. The first Solve is the item constructor
and must stay as is when defining a constraint, while the second indicates that the argument
of the Solve constructor must be of (Haskell) type Solve. Here are the values that type
Solve can take.

Syntax:

data Solve = Satisfy
| Minimize Expr
| Maximize Expr

Solve Satisfy determines a constraint satisfaction problem, while the rest two cases
determine an optimization problem where the object function replaces Expr.

User defined operations

Predicates and tests

The syntax for defining a predicate and tests in the Haskell AST is shown below,
respectively.

Syntax:
Pred Ident [Param] (Maybe Expr)

Syntax:
Test Ident [Param] (Maybe Expr)

The first argument of the constructor corresponds to the name of the predicate/test. A
list containing its arguments follows. If it is a natively supported predicate/test, then



Nothing goes in place of (Maybe Expr), while in the case of a user-defined predicate/test a
body must be provided.
An argument for the predicate is specified by a variable name, its inst and its type.

Syntax:
type Param = (Inst, VarType, Ident)

Functions

To define a function in the Haskell AST, one more piece of information is needed: the
type-inst of the function’s result.

Syntax:
Function TypeInst Ident [Param] (Maybe Expr)

Output item

Syntax:
Output Expr

Importing a file

Syntax:

| Include Filename

where the path to the file replaces Filename.

Readability and documentation

Two more items are provided for readability and documentation purposes. Item
constructor Empty translates to an empty line.
Comments can be added as follows

Syntax:

Comment String



4. Expr for expressions

In this section we explain how MiniZinc expressions can be represented in our Haskell
AST. The Haskell datatype for expressions is Expr.

Built-in scalar values

Syntax:

data Expr = AnonVar
| var Ident
| BConst Bool
| IConst Int
| FConst Float
| SConst String

As indicated by the syntax shown above, constructor BConst followed by a Haskell
boolean value represents the corresponding boolean value in the MiniZinc language.
Similarly, IConst, FConst and SConst are the constructors for integer, floating and string
values in MiniZinc, respectively.

Representation of a variable is done with the Var constructor followed by the name of
the variable in a Haskell string format. Care is recommended when using Var Ident, since
MiniZinc variable names are represented by Haskell strings, so misspelling a name will cause
a FlatZinc compilation error or unexpected behaviour.

The MiniZinc anonymous decision variable _ is represented by AnonVar.

Built-in compound values

Arrays

Four distinct constructors are provided for array representations.

Syntax:

data Expr = ...
| Interval Expr Expr
| ArrayLit [Expr]
| ArrayLit2D [[Expr]]



| ArrayComp Expr CompTail
| ArrayElem Ident [Expr]

The Interval represents arrays expressed in MiniZinc with the . . operator.

The ArraylLit constructor is used for representing array literals. The first argument of
this constructor contains the representation of the array’s elements. To define a
2-dimensional array literal, use ArrayLit2D constructor.

Array comprehensions can be represented with the ArrayComp constructor. The first
argument of the constructor represents the head expression of the comprehension. The
CompTail datatype represents the generators of the comprehension and gives an optional
expression for a where restriction on the generators.

Syntax:
| type CompTail = ([Generator], Maybe Expr)

A Generator has the following syntax.

Syntax:
| type Generator = ([Ident], Expr)

Representation of an element of an array can be done with the ArrayElem constructor.
Its first argument should be substituted by a Haskell string with the name of the array and
the second argument is a list with the index(es) of the specific element of the array. This list
must contain as many elements as the array’s dimensions.

Sets

Sets can be represented in two ways by our Haskell AST.

Syntax:

data Expr = ...
| Interval Expr Expr
| SetLit [Expr]
| SetComp Expr CompTail

Similarly to ArrayLit, the SetLit constructor is used for representing set literals.



SetComp is used for set comprehensions. The first argument of the constructor
represents the head expression of the comprehension. The CompTail datatype works the
same as with the ArrayComp constructor.

Example:

SetComp (Bi BPlus (Var “i”) (Var “j”))
([([*“i”], Interval (IConst 1) (IConst 3)),
([“F”], Interval (IConst 1) (Var “i”))
], Nothing)

Haskell AST:

MiniZinc: {i+j | i in 1..3, j in 1..i }

Example:

SetComp (Var “i”)
([([*i”], Interval (IConst 1) (IConst 10))],
(Bi Eq (Bi Mod (Var “i”) (IConst 2))
(IConst 9)))

Haskell AST:

MiniZinc: { i | i in 1..10 where (i mod 2 = 9) }

Operators
To represent operations over values, the following syntax is used.

Syntax:

data Expr = ...
| Bi Bop Expr Expr
| U Uop Expr

Constructor U is for unary operators and Bi for binary operators. The first argument of
both constructors represent the operator. A list with all operators’ representation is included
in the appendix of this document. The Expr arguments represent the expressions on which
the operator applies.

10



Call expressions

To call a function or a predicate in MiniZinc, the following syntax is used in the Haskell
AST.

Syntax:

data Expr = ...
| Call Func [Expr]

A call can refer to either a user-defined or a built-in function or predicate. All built-in
MiniZinc 2.0 calls are supported and named as in MiniZinc. For a user-defined call, use the
function userD :: Ident -> Func providing a Haskell string with the name of the
desired function or predicate.

Example:

Call forall
[ArrayComp (Bi Neq (ArrayElem "a" [Var "i"])
Haskell AST: (ArrayElem "a" [Var "3"1))
([(["i", "j"]1, Interval (IConst 1) (IConst

3))1, Nothing)]

MiniZinc: forall([a[i] != a[j] | i, j in 1..3])

Generator calls

Syntax:

data Expr = ...
| GenCall Func CompTail Expr

11



Example:

GenCall forall
(e i™, "j"1, Interval (IConst 1) (IConst 3))],
Haskell AST: Nothing)
(Bi Neq (ArrayElem "a" [Var "i"]) (ArrayElem "a" [Var

"3"1))

forall(i, j in 1..3)
(a[i] !'= a[]])

MiniZinc:

Conditionals
For representing an if-then-else conditional in MiniZinc, use the following syntax

Syntax:
data Expr = ...
| ITE [(Expr, Expr)] Expr

The list in the first argument of ITE constructor must have at least one pair of
expressions. The first term of the pair represents the conditional (if) and the second term
represents the expression in case of satisfaction (then). The last argument of the ITE
constructor represent the expression in case of non-satisfaction (else). If the list of the first
argument has more than one elements, all next elements after the first translate to
consecutive elseif-then MiniZinc expressions.

Example:

ITE [(Bi Lt (Var "x") (IConst @), U UMinus (IConst 1)),
Haskell AST: (Bi Gt (var "x") (IConst @), IConst 1)]
(IConst 9)

if x < @ then - 1

MiniZinc: elseif x > 0 then 1
else 0 endif

12



Let expressions

Syntax:

data Expr = ...
| Let [Item] Expr

The Items in the list of Let’s first argument must be only variable declaration or
constraint items. The last argument of the Let constructor corresponds to the expression
following the “in” keyword in MiniZinc’s let expression.

Example:

Let [Declare (Dec, Int) "x" (Just (IConst 3)),
Haskell AST: Declare (Dec, Int) "y" (Just (IConst 4))]
(Bi BPlus (Var "x") (Var "y"))

let {var int: x = 3;
MiniZinc: var int: y = 4;}
in x +y

5. Representing and running a model

In your Haskell source code, import module MZinHaskell. Use the Haskell AST
described above to define your MiniZinc model. In case you need a separate data file for
your model, create a Haskell list with Assign items. Use

> writeData <assign-model>

to write the data to a .dzn file. This function takes a list of Items (or a MZModel) as an
argument. You will be asked for the path of the file in which the data will be written. Use the
corresponding conventions for representing a filepath, depending on your OS. For example,
in Windows the filepath will be similar to C: \file\path\to\datafile.dzn.

To solve the model interactively, use

> iTestModel <model>

13



This function will initiate a dialogue where, first, you will be asked for the path of the file in
which the generated MiniZinc code should be written. Provide this filepath without the
“mzn” extension. In case the file extension is included in the filepath, the name of the target
file will just have a “mzn.mzn” suffix. After entering the filepath for the .mzn file, you will be
prompted to provide the path to the data file. Enter empty input, in case no data file is
needed, or provide the asked filepath (file extension included). Next, you will be given the
choice to use the built-in FD solver or choco3. For FD, type fd. Enter empty input for choco3.
Last, you can choose to output only one solution (the best, in case of an optimization
problem) by giving empty input, or all solutions by entering 0 at the stdin.

An example of running iTestModel is shown below. The text in bold shows the dialogue
generated by this function.

> :1 test.hs

> iTestModel planning

Enter MiniZinc model's filepath (without .mzn extention):
C:\Users\klara\Documents\MiniZinc\plan

Is there a data file? If yes, provide its filepath:
C:\Users\klara\Documents\MiniZinc\pland.dzn

Type "fd" for G12/FD solver or leave empty for choco solver.
fd

Enter 0 to output all solutions.

File test.hs contains a few example models.

14



Appendix

Unary operators

Haskell AST MiniZinc

Not not
UPlus +
UMinus -

Binary operators

Haskell AST MiniZinc
Gt >
Lt <
Lte <=
Gte >=
Eq =
Eqq ==
Neq I=
Larrow <-
And N
In in
Super superset
Inter intersect
SDiff symdiff
Concat ++

Haskell AST
BPlus
BMinus
Times
Div
IDiv
Mod
LRarrow
Rarrow
Or
Sub
Union
Diff

RangeOp

MiniZinc

div

mod

\/

subset

union

diff

15



Calls

Haskell AST
BoolTolnt

IntToFloat
SetToArray
Forall
Xorall
Assert
Abort
Trace
Fix
IsFixed
Show
ShowlInt
ShowFloat
Exists
Acos
Sinh
Tanh
Acosh
Card
ArrInters

Index

MiniZine
bool2int
int2float
set2array
forall
xorall
assert
abort
trace
fix
is_fixed
show
show_int
show_float
exists
acos
sinh
tanh
acosh

card

array_intersect

index_set

Haskell AST

Sum
Product
Min
Max
Abs
Sqrt
Power
Exp
Ln
Log
Sin
Cos
Tan
Asin
Atan
Cosh
Asinh
Atanh
ArrUnion
Length

Index12

MiniZine
sum
product
min
max
abs
sqrt
pow
exp
In
log
sin
cos
tan
asin
atan
cosh
asinh
atanh
array_union
length

index_set_lof2

16



Index22
ArrDom
Ceil
Round
Join
Ub
UbArray

Absent

index_set_20f2
dom_array
ceil
round
join
ub
ub_array

absent

Deopt
SizeDom
Floor
MConcat
Lb
LbArray

Occurs

deopt
dom_size
floor
concat
Ib
lb_array

occurs

17



