/* -*- mode: C -*-  */
/*
   IGraph library.
   Copyright (C) 2012  Gabor Csardi <csardi.gabor@gmail.com>
   334 Harvard street, Cambridge, MA 02139 USA

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
   02110-1301 USA

*/

/*
  The contents of this file was originally taken from the LAD
  homepage: http://liris.cnrs.fr/csolnon/LAD.html and then
  modified to fit better into igraph.

  Unfortunately LAD seems to have no version numbers. The files
  were apparently last changed on the 29th of June, 2010.

  The original copyright message follows here. The CeCILL-B V1 license
  is GPL compatible, because instead of V1, one can freely choose to
  use V2, and V2 is explicitly GPL compatible.
*/

/* This software has been written by Christine Solnon.
   It is distributed under the CeCILL-B FREE SOFTWARE LICENSE
   see http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html
   for more details
*/

/* Several modifications had to be made to the original LAD implementation
   to make it compile with non-C99-compliant compilers such as MSVC. In
   particular, I had to remove all the variable-sized arrays.
   -- Tamas Nepusz, 11 July 2013
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <time.h>
#include <limits.h>

#include "igraph_interface.h"
#include "igraph_adjlist.h"
#include "igraph_vector.h"
#include "igraph_vector_ptr.h"
#include "igraph_memory.h"
#include "igraph_matrix.h"
#include "igraph_interrupt_internal.h"

/* define boolean type as char */
#define true 1
#define false 0
#define bool char

/* helper to allocate an array of given size and free it using IGRAPH_FINALLY
 * when needed */
#define ALLOC_ARRAY(VAR, SIZE, TYPE) { \
        VAR = igraph_Calloc(SIZE, TYPE);   \
        if (VAR == 0) {                    \
            IGRAPH_ERROR("cannot allocate '" #VAR "' array in LAD isomorphism search", IGRAPH_ENOMEM); \
        }  \
        IGRAPH_FINALLY(igraph_free, VAR);  \
    }

/* helper to allocate an array of given size and store its address in a
 * pointer array */
#define ALLOC_ARRAY_IN_HISTORY(VAR, SIZE, TYPE, HISTORY) { \
        VAR = igraph_Calloc(SIZE, TYPE);   \
        if (VAR == 0) {                    \
            IGRAPH_ERROR("cannot allocate '" #VAR "' array in LAD isomorphism search", IGRAPH_ENOMEM); \
        }  \
        IGRAPH_FINALLY(igraph_free, VAR);  \
        IGRAPH_CHECK(igraph_vector_ptr_push_back(HISTORY, VAR));  \
        IGRAPH_FINALLY_CLEAN(1);           \
    }

/* ---------------------------------------------------------*/
/* Coming from graph.c                                      */
/* ---------------------------------------------------------*/

typedef struct {
    long int nbVertices; /* Number of vertices */
    igraph_vector_t nbSucc;
    igraph_adjlist_t succ;
    igraph_matrix_char_t isEdge;
} Tgraph;

int igraph_i_lad_createGraph(const igraph_t *igraph, Tgraph* graph) {
    long int i, j, n;
    long int no_of_nodes = igraph_vcount(igraph);
    igraph_vector_int_t *neis;

    IGRAPH_VECTOR_INIT_FINALLY(&graph->nbSucc, no_of_nodes);
    IGRAPH_CHECK(igraph_degree(igraph, &graph->nbSucc, igraph_vss_all(),
                               IGRAPH_OUT, IGRAPH_LOOPS));

    graph->nbVertices = no_of_nodes;

    IGRAPH_CHECK(igraph_adjlist_init(igraph, &graph->succ, IGRAPH_OUT));
    IGRAPH_FINALLY(igraph_adjlist_destroy, &graph->succ);
    IGRAPH_CHECK(igraph_matrix_char_init(&graph->isEdge,
                                         no_of_nodes, no_of_nodes));
    IGRAPH_FINALLY(igraph_matrix_char_destroy, &graph->isEdge);

    for (i = 0; i < no_of_nodes; i++) {
        neis = igraph_adjlist_get(&graph->succ, i);
        n = igraph_vector_int_size(neis);
        for (j = 0; j < n; j++) {
            int v = (int)VECTOR(*neis)[j];
            if (MATRIX(graph->isEdge, i, v)) {
                IGRAPH_ERROR("LAD functions only work on simple graphs, "
                             "simplify your graph", IGRAPH_EINVAL);
            }
            MATRIX(graph->isEdge, i, v) = 1;
        }
    }

    return 0;
}

/* ---------------------------------------------------------*/
/* Coming from domains.c                                    */
/* ---------------------------------------------------------*/

typedef struct {
    igraph_vector_int_t nbVal;    /* nbVal[u] = number of values in D[u] */
    igraph_vector_int_t firstVal; /* firstVal[u] = pos in val of the
                                   first value of D[u] */
    igraph_vector_int_t val;      /* val[firstVal[u]..firstVal[u]+nbVal[u]-1] =
                                   values of D[u] */
    igraph_matrix_int_t posInVal;
    /* If v in D[u] then firstVal[u] <= posInVal[u][v] < firstVal[u]+nbVal[u]
       and val[posInVal[u][v]] = v
       otherwise posInVal[u][v] >= firstVal[u]+nbVal[u] */
    int valSize;    /* size of val */
    igraph_matrix_int_t firstMatch;
    /* firstMatch[u][v] = pos in match of the first vertex
       of the covering matching of G_(u, v) */
    igraph_vector_int_t matching;
    /* matching[firstMatch[u][v]..firstMatch[u][v]+nbSucc[u]-1]
       = covering matching of G_(u, v) */
    int nextOutToFilter; /* position in toFilter of the next pattern node whose
                          domain should be filtered (-1 if no domain to
                          filter) */
    int lastInToFilter; /* position in toFilter of the last pattern node whose
                         domain should be filtered */
    igraph_vector_int_t toFilter;  /* contain all pattern nodes whose
                                    domain should be filtered */
    igraph_vector_char_t markedToFilter;  /* markedToFilter[u]=true if u
                                           is in toFilter; false otherwise */
    igraph_vector_int_t globalMatchingP; /* globalMatchingP[u] = node of Gt
                                          matched to u in globalAllDiff(Np) */
    igraph_vector_int_t globalMatchingT;
    /* globalMatchingT[v] = node of Gp matched to v in globalAllDiff(Np)
       or -1 if v is not matched */
} Tdomain;

bool igraph_i_lad_toFilterEmpty(Tdomain* D) {
    /* return true if there is no more nodes in toFilter */
    return (D->nextOutToFilter < 0);
}

void igraph_i_lad_resetToFilter(Tdomain *D) {
    /* empty to filter and unmark the vertices that are marked to be filtered */
    igraph_vector_char_null(&D->markedToFilter);
    D->nextOutToFilter = -1;
}


int igraph_i_lad_nextToFilter(Tdomain* D, int size) {
    /* precondition: emptyToFilter = false
       remove a node from toFilter (FIFO)
       unmark this node and return it */
    int u = VECTOR(D->toFilter)[D->nextOutToFilter];
    VECTOR(D->markedToFilter)[u] = false;
    if (D->nextOutToFilter == D->lastInToFilter) {
        /* u was the last node in tofilter */
        D->nextOutToFilter = -1;
    } else if (D->nextOutToFilter == size - 1) {
        D->nextOutToFilter = 0;
    } else {
        D->nextOutToFilter++;
    }
    return u;
}

void igraph_i_lad_addToFilter(int u, Tdomain* D, int size) {
    /* if u is not marked, then add it to toFilter and mark it */
    if (VECTOR(D->markedToFilter)[u]) {
        return;
    }
    VECTOR(D->markedToFilter)[u] = true;
    if (D->nextOutToFilter < 0) {
        D->lastInToFilter = 0;
        D->nextOutToFilter = 0;
    } else if (D->lastInToFilter == size - 1) {
        D->lastInToFilter = 0;
    } else {
        D->lastInToFilter++;
    }
    VECTOR(D->toFilter)[D->lastInToFilter] = u;
}

bool igraph_i_lad_isInD(int u, int v, Tdomain* D) {
    /* returns true if v belongs to D(u); false otherwise */
    return (MATRIX(D->posInVal, u, v) <
            VECTOR(D->firstVal)[u] + VECTOR(D->nbVal)[u]);
}

int igraph_i_lad_augmentingPath(int u, Tdomain* D, int nbV, bool* result) {
    /* return true if there exists an augmenting path starting from u and
       ending on a free vertex v in the bipartite directed graph G=(U,
       V, E) such that U=pattern nodes, V=target nodes, and
       E={(u, v), v in D(u)} U {(v, u), D->globalMatchingP[u]=v}
       update D-globalMatchingP and D->globalMatchingT consequently */
    int *fifo, *pred;
    bool *marked;
    int nextIn = 0;
    int nextOut = 0;
    int i, v, v2, u2;

    *result = false;

    /* Allocate memory */
    ALLOC_ARRAY(fifo, nbV, int);
    ALLOC_ARRAY(pred, nbV, int);
    ALLOC_ARRAY(marked, nbV, bool);

    for (i = 0; i < VECTOR(D->nbVal)[u]; i++) {
        v = VECTOR(D->val)[ VECTOR(D->firstVal)[u] + i ]; /* v in D(u) */
        if (VECTOR(D->globalMatchingT)[v] < 0) {
            /* v is free => augmenting path found */
            VECTOR(D->globalMatchingP)[u] = v;
            VECTOR(D->globalMatchingT)[v] = u;
            *result = true;
            goto cleanup;
        }
        /* v is not free => add it to fifo */
        pred[v] = u;
        fifo[nextIn++] = v;
        marked[v] = true;
    }
    while (nextOut < nextIn) {
        u2 = VECTOR(D->globalMatchingT)[fifo[nextOut++]];
        for (i = 0; i < VECTOR(D->nbVal)[u2]; i++) {
            v = VECTOR(D->val)[ VECTOR(D->firstVal)[u2] + i ]; /* v in D(u2) */
            if (VECTOR(D->globalMatchingT)[v] < 0) {
                /* v is free => augmenting path found */
                while (u2 != u) { /* update global matching wrt path */
                    v2 = VECTOR(D->globalMatchingP)[u2];
                    VECTOR(D->globalMatchingP)[u2] = v;
                    VECTOR(D->globalMatchingT)[v] = u2;
                    v = v2;
                    u2 = pred[v];
                }
                VECTOR(D->globalMatchingP)[u] = v;
                VECTOR(D->globalMatchingT)[v] = u;
                *result = true;
                goto cleanup;
            }
            if (!marked[v]) { /* v is not free and not marked => add it to fifo */
                pred[v] = u2;
                fifo[nextIn++] = v;
                marked[v] = true;
            }
        }
    }

cleanup:
    igraph_free(fifo);
    igraph_free(pred);
    igraph_free(marked);
    IGRAPH_FINALLY_CLEAN(3);

    return 0;
}

int igraph_i_lad_removeAllValuesButOne(int u, int v, Tdomain* D, Tgraph* Gp,
                                       Tgraph* Gt, bool* result) {
    /* remove all values but v from D(u) and add all successors of u in
       toFilter return false if an inconsistency is detected wrt to
       global all diff */
    int j, oldPos, newPos;
    igraph_vector_int_t *uneis = igraph_adjlist_get(&Gp->succ, u);
    int n = (int) igraph_vector_int_size(uneis);
    /* add all successors of u in toFilter */
    for (j = 0; j < n; j++) {
        igraph_i_lad_addToFilter((int) VECTOR(*uneis)[j], D,
                                 (int) (Gp->nbVertices));
    }
    /* remove all values but v from D[u] */
    oldPos = MATRIX(D->posInVal, u, v);
    newPos = VECTOR(D->firstVal)[u];
    VECTOR(D->val)[oldPos] = VECTOR(D->val)[newPos];
    VECTOR(D->val)[newPos] = v;
    MATRIX(D->posInVal, u, VECTOR(D->val)[newPos]) = newPos;
    MATRIX(D->posInVal, u, VECTOR(D->val)[oldPos]) = oldPos;
    VECTOR(D->nbVal)[u] = 1;
    /* update global matchings that support the global all different
       constraint */
    if (VECTOR(D->globalMatchingP)[u] != v) {
        VECTOR(D->globalMatchingT)[ VECTOR(D->globalMatchingP)[u] ] = -1;
        VECTOR(D->globalMatchingP)[u] = -1;
        IGRAPH_CHECK(igraph_i_lad_augmentingPath(u, D, (int) (Gt->nbVertices), result));
    } else {
        *result = true;
    }
    return 0;
}


int igraph_i_lad_removeValue(int u, int v, Tdomain* D, Tgraph* Gp,
                             Tgraph* Gt, bool* result) {
    /* remove v from D(u) and add all successors of u in toFilter
       return false if an inconsistency is detected wrt global all diff */
    int j;
    igraph_vector_int_t *uneis = igraph_adjlist_get(&Gp->succ, u);
    int n = (int) igraph_vector_int_size(uneis);
    int oldPos, newPos;

    /* add all successors of u in toFilter */
    for (j = 0; j < n; j++) {
        igraph_i_lad_addToFilter((int) VECTOR(*uneis)[j], D,
                                 (int) (Gp->nbVertices));
    }
    /* remove v from D[u] */
    oldPos = MATRIX(D->posInVal, u, v);
    VECTOR(D->nbVal)[u]--;
    newPos = VECTOR(D->firstVal)[u] + VECTOR(D->nbVal)[u];
    VECTOR(D->val)[oldPos] = VECTOR(D->val)[newPos];
    VECTOR(D->val)[newPos] = v;
    MATRIX(D->posInVal, u, VECTOR(D->val)[oldPos]) = oldPos;
    MATRIX(D->posInVal, u, VECTOR(D->val)[newPos]) = newPos;
    /* update global matchings that support the global all different
       constraint */
    if (VECTOR(D->globalMatchingP)[u] == v) {
        VECTOR(D->globalMatchingP)[u] = -1;
        VECTOR(D->globalMatchingT)[v] = -1;
        IGRAPH_CHECK(igraph_i_lad_augmentingPath(u, D, (int) (Gt->nbVertices), result));
    } else {
        *result = true;
    }
    return 0;
}


int igraph_i_lad_matchVertices(int nb, igraph_vector_int_t* toBeMatched,
                               bool induced, Tdomain* D, Tgraph* Gp,
                               Tgraph* Gt, int *invalid) {
    /* for each u in toBeMatched[0..nb-1], match u to
       D->val[D->firstVal[u] and filter domains of other non matched
       vertices wrt FC(Edges) and FC(diff) (this is not mandatory, as
       LAD is stronger than FC(Edges) and GAC(allDiff) is stronger than
       FC(diff), but this speeds up the solution process).
       return false if an inconsistency is detected by FC(Edges) or
       FC(diff); true otherwise; */
    int j, u, v, u2, oldNbVal;
    igraph_vector_int_t *vneis;
    bool result = false;

    while (nb > 0) {
        u = VECTOR(*toBeMatched)[--nb];
        v = VECTOR(D->val)[ VECTOR(D->firstVal)[u] ];
        vneis = igraph_adjlist_get(&Gt->succ, v);
        /* match u to v */
        for (u2 = 0; u2 < Gp->nbVertices; u2++) {
            if (u != u2) {
                oldNbVal = VECTOR(D->nbVal)[u2];
                if (igraph_i_lad_isInD(u2, v, D)) {
                    IGRAPH_CHECK(igraph_i_lad_removeValue(u2, v, D, Gp, Gt, &result));
                    if (!result) {
                        *invalid = 1 ; return 0;
                    }
                }
                if (MATRIX(Gp->isEdge, u, u2)) {
                    /* remove from D[u2] vertices which are not adjacent to v */
                    j = VECTOR(D->firstVal)[u2];
                    while (j < VECTOR(D->firstVal)[u2] + VECTOR(D->nbVal)[u2]) {
                        if (MATRIX(Gt->isEdge, v, VECTOR(D->val)[j])) {
                            j++;
                        } else {
                            IGRAPH_CHECK(igraph_i_lad_removeValue(u2, VECTOR(D->val)[j], D, Gp, Gt, &result));
                            if (!result) {
                                *invalid = 1; return 0;
                            }
                        }
                    }
                } else if (induced) {
                    /* (u, u2) is not an edge => remove neighbors of v from D[u2] */
                    if (VECTOR(D->nbVal)[u2] < VECTOR(Gt->nbSucc)[v]) {
                        j = VECTOR(D->firstVal)[u2];
                        while (j < VECTOR(D->firstVal)[u2] + VECTOR(D->nbVal)[u2]) {
                            if (!MATRIX(Gt->isEdge, v, VECTOR(D->val)[j])) {
                                j++;
                            } else {
                                IGRAPH_CHECK(igraph_i_lad_removeValue(u2, VECTOR(D->val)[j], D, Gp, Gt, &result));
                                if (!result) {
                                    *invalid = 1; return 0;
                                }
                            }
                        }
                    } else {
                        for (j = 0; j < VECTOR(Gt->nbSucc)[v]; j++) {
                            if (igraph_i_lad_isInD(u2, (int) VECTOR(*vneis)[j], D)) {
                                IGRAPH_CHECK(igraph_i_lad_removeValue(u2, (int) VECTOR(*vneis)[j], D, Gp, Gt, &result));
                                if (!result) {
                                    *invalid = 1; return 0;
                                }
                            }
                        }
                    }
                }
                if (VECTOR(D->nbVal)[u2] == 0) {
                    *invalid = 1; /* D[u2] is empty */
                    return 0;
                }
                if ((VECTOR(D->nbVal)[u2] == 1) && (oldNbVal > 1)) {
                    VECTOR(*toBeMatched)[nb++] = u2;
                }
            }
        }
    }
    *invalid = 0;
    return 0;
}


bool igraph_i_lad_matchVertex(int u, bool induced, Tdomain* D, Tgraph* Gp,
                              Tgraph *Gt) {
    int invalid;
    /* match u to D->val[D->firstVal[u]] and filter domains of other non
       matched vertices wrt FC(Edges) and FC(diff) (this is not
       mandatory, as LAD is stronger than FC(Edges) and GAC(allDiff)
       is stronger than FC(diff), but this speeds up the solution process).
       return false if an inconsistency is detected by FC(Edges) or
       FC(diff); true otherwise; */
    igraph_vector_int_t toBeMatched;
    igraph_vector_int_init(&toBeMatched, Gp->nbVertices);
    IGRAPH_FINALLY(igraph_vector_int_destroy, &toBeMatched);
    VECTOR(toBeMatched)[0] = u;
    igraph_i_lad_matchVertices(1, &toBeMatched, induced, D, Gp, Gt,
                               &invalid);
    igraph_vector_int_destroy(&toBeMatched);
    IGRAPH_FINALLY_CLEAN(1);

    return invalid ? false : true;
}


int igraph_i_lad_qcompare (void const *a, void const *b) {
    /* function used by the qsort function */
    int pa = *((int*)a) - *((int*)b);
    return pa;
}

bool igraph_i_lad_compare(int size_mu, int* mu, int size_mv, int* mv) {
    /* return true if for every element u of mu there exists
       a different element v of mv such that u <= v;
       return false otherwise */
    int i, j;
    qsort(mu, (size_t) size_mu, sizeof(int), igraph_i_lad_qcompare);
    qsort(mv, (size_t) size_mv, sizeof(int), igraph_i_lad_qcompare);
    i = size_mv - 1;
    for (j = size_mu - 1; j >= 0; j--) {
        if (mu[j] > mv[i]) {
            return false;
        }
        i--;
    }
    return true;
}

int igraph_i_lad_initDomains(bool initialDomains,
                             igraph_vector_ptr_t *domains, Tdomain* D,
                             Tgraph* Gp, Tgraph* Gt, int *empty) {
    /* for every pattern node u, initialize D(u) with every vertex v
       such that for every neighbor u' of u there exists a different
       neighbor v' of v such that degree(u) <= degree(v)
       if initialDomains, then filter initial domains wrt
       compatibilities given in file
       return false if a domain is empty and true otherwise */
    int *val;
    bool *dom;
    int *mu, *mv;
    int matchingSize, u, v, i, j;
    igraph_vector_t *vec;
    igraph_vector_t *Gp_uneis;
    igraph_vector_t *Gt_vneis;

    val = igraph_Calloc(Gp->nbVertices * Gt->nbVertices, int);
    if (val == 0) {
        IGRAPH_ERROR("cannot allocated 'val' array in igraph_i_lad_initDomains", IGRAPH_ENOMEM);
    }

    dom = igraph_Calloc(Gt->nbVertices, bool);
    if (dom == 0) {
        igraph_free(val);
        IGRAPH_ERROR("cannot allocated 'dom' array in igraph_i_lad_initDomains", IGRAPH_ENOMEM);
    }

    IGRAPH_CHECK(igraph_vector_int_init(&D->globalMatchingP, Gp->nbVertices));
    IGRAPH_FINALLY(igraph_vector_int_destroy, &D->globalMatchingP);
    igraph_vector_int_fill(&D->globalMatchingP, -1L);

    IGRAPH_CHECK(igraph_vector_int_init(&D->globalMatchingT, Gt->nbVertices));
    IGRAPH_FINALLY(igraph_vector_int_destroy, &D->globalMatchingT);
    igraph_vector_int_fill(&D->globalMatchingT, -1L);

    IGRAPH_CHECK(igraph_vector_int_init(&D->nbVal, Gp->nbVertices));
    IGRAPH_FINALLY(igraph_vector_int_destroy, &D->nbVal);

    IGRAPH_CHECK(igraph_vector_int_init(&D->firstVal, Gp->nbVertices));
    IGRAPH_FINALLY(igraph_vector_int_destroy, &D->firstVal);

    IGRAPH_CHECK(igraph_matrix_int_init(&D->posInVal,
                                        Gp->nbVertices, Gt->nbVertices));
    IGRAPH_FINALLY(igraph_matrix_int_destroy, &D->posInVal);

    IGRAPH_CHECK(igraph_matrix_int_init(&D->firstMatch,
                                        Gp->nbVertices, Gt->nbVertices));
    IGRAPH_FINALLY(igraph_matrix_int_destroy, &D->firstMatch);

    IGRAPH_CHECK(igraph_vector_char_init(&D->markedToFilter, Gp->nbVertices));
    IGRAPH_FINALLY(igraph_vector_char_destroy, &D->markedToFilter);

    IGRAPH_CHECK(igraph_vector_int_init(&D->toFilter, Gp->nbVertices));
    IGRAPH_FINALLY(igraph_vector_int_destroy, &D->toFilter);

    D->valSize = 0;
    matchingSize = 0;

    for (u = 0; u < Gp->nbVertices; u++) {
        igraph_vector_int_t *Gp_uneis = igraph_adjlist_get(&Gp->succ, u);
        if (initialDomains) {
            /* read the list of target vertices which are compatible with u */
            vec = VECTOR(*domains)[u];
            i = (int) igraph_vector_size(vec);
            memset(dom, false, sizeof(bool) * (size_t)(Gt->nbVertices));
            for (j = 0; j < i; j++) {
                v = (int) VECTOR(*vec)[j];
                dom[v] = true;
            }
        }
        VECTOR(D->markedToFilter)[u] = true;
        VECTOR(D->toFilter)[u] = u;
        VECTOR(D->nbVal)[u] = 0;
        VECTOR(D->firstVal)[u] = D->valSize;
        for (v = 0; v < Gt->nbVertices; v++) {
            igraph_vector_int_t *Gt_vneis = igraph_adjlist_get(&Gt->succ, v);
            if ((initialDomains) && (!dom[v])) { /* v not in D(u) */
                MATRIX(D->posInVal, u, v) = (int) (VECTOR(D->firstVal)[u] +
                                                   Gt->nbVertices);
            } else {
                MATRIX(D->firstMatch, u, v) = matchingSize;
                matchingSize += VECTOR(Gp->nbSucc)[u];
                if (VECTOR(Gp->nbSucc)[u] <= VECTOR(Gt->nbSucc)[v]) {
                    mu = igraph_Calloc((long int) VECTOR(Gp->nbSucc)[u], int);
                    if (mu == 0) {
                        igraph_free(val); igraph_free(dom);
                        IGRAPH_ERROR("cannot allocate 'mu' array in igraph_i_lad_initDomains", IGRAPH_ENOMEM);
                    }
                    mv = igraph_Calloc((long int) VECTOR(Gt->nbSucc)[v], int);
                    if (mv == 0) {
                        igraph_free(mu); igraph_free(val); igraph_free(dom);
                        IGRAPH_ERROR("cannot allocate 'mv' array in igraph_i_lad_initDomains", IGRAPH_ENOMEM);
                    }
                    for (i = 0; i < VECTOR(Gp->nbSucc)[u]; i++) {
                        mu[i] = (int) VECTOR(Gp->nbSucc)[(long int) VECTOR(*Gp_uneis)[i]];
                    }
                    for (i = 0; i < VECTOR(Gt->nbSucc)[v]; i++) {
                        mv[i] = (int) VECTOR(Gt->nbSucc)[(long int) VECTOR(*Gt_vneis)[i]];
                    }
                    if (igraph_i_lad_compare((int) VECTOR(Gp->nbSucc)[u], mu,
                                             (int) VECTOR(Gt->nbSucc)[v], mv) == 1) {
                        val[D->valSize] = v;
                        VECTOR(D->nbVal)[u]++;
                        MATRIX(D->posInVal, u, v) = D->valSize++;
                    } else {  /* v not in D(u) */
                        MATRIX(D->posInVal, u, v) =
                            (int)(VECTOR(D->firstVal)[u] + Gt->nbVertices);
                    }
                    igraph_free(mu); mu = 0;
                    igraph_free(mv); mv = 0;
                } else {  /* v not in D(u) */
                    MATRIX(D->posInVal, u, v) =
                        (int) (VECTOR(D->firstVal)[u] + Gt->nbVertices);
                }
            }
        }
        if (VECTOR(D->nbVal)[u] == 0) {
            *empty = 1;  /* empty domain */
            igraph_free(val);
            igraph_free(dom);
            return 0;
        }
    }
    IGRAPH_CHECK(igraph_vector_int_init(&D->val, D->valSize));
    IGRAPH_FINALLY(igraph_vector_int_destroy, &D->val);
    for (i = 0; i < D->valSize; i++) {
        VECTOR(D->val)[i] = val[i];
    }

    IGRAPH_CHECK(igraph_vector_int_init(&D->matching, matchingSize));
    IGRAPH_FINALLY(igraph_vector_int_destroy, &D->matching);
    igraph_vector_int_fill(&D->matching, -1);

    D->nextOutToFilter = 0;
    D->lastInToFilter = (int) (Gp->nbVertices - 1);
    *empty = 0;

    igraph_free(val);
    igraph_free(dom);
    return 0;
}

/* ---------------------------------------------------------*/
/* Coming from allDiff.c                                    */
/* ---------------------------------------------------------*/

#define white 0
#define grey 1
#define black 2
#define toBeDeleted 3
#define deleted 4

void igraph_i_lad_addToDelete(int u, int* list, int* nb, int* marked) {
    if (marked[u] < toBeDeleted) {
        list[(*nb)++] = u;
        marked[u] = toBeDeleted;
    }
}

int igraph_i_lad_updateMatching(int sizeOfU, int sizeOfV,
                                igraph_vector_int_t *degree,
                                igraph_vector_int_t *firstAdj,
                                igraph_vector_int_t *adj,
                                igraph_vector_int_t * matchedWithU,
                                int *invalid) {
    /* input:
       sizeOfU = number of vertices in U
       sizeOfV = number of vertices in V
       degree[u] = number of vertices of V which are adjacent to u
       firstAdj[u] = pos in adj of the first vertex of V adjacent to u
       adj[firstAdj[u]..firstAdj[u]+sizeOfU[u]-1] = vertices of V adjacent to u

       input/output:
       matchedWithU[u] = vertex of V matched with u

       returns true if there exists a matching that covers U, i.e., if
       for every u in 0..nbU-1, there exists a different v in 0..nb-1
       such that v is adjacent to u; returns false otherwise */

    int *matchedWithV; /* matchedWithV[matchedWithU[u]]=u */
    int *nbPred; /* nbPred[i] = nb of predecessors of the ith
                  vertex of V in the DAG */
    int *pred; /* pred[i][j] = jth predecessor the ith
                 vertex of V in the DAG */
    int *nbSucc; /* nbSucc[i] = nb of successors of the ith
                  vertex of U in the DAG */
    int *succ; /* succ[i][j] = jth successor of the ith
                 vertex of U in the DAG */
    int *listV, *listU, *listDV, *listDU;
    int nbV, nbU, nbDV, nbDU;
    int i, j, k, stop, u, v, w;
    int *markedV, *markedU;
    /* markedX[i]=white if X[i] is not in the DAG
       markedX[i]=grey if X[i] has been added to the DAG, but not its successors
       markedX[i]=black if X[i] and its successors have been added to the DAG
       markedX[i]=toBeDeleted if X[i] must be deleted from the DAG
       markedX[i]=deleted if X[i] has been deleted from the DAG */
    int nbUnmatched = 0; /* number of vertices of U that are not matched */
    int *unmatched;      /* vertices of U that are not matched */
    int *posInUnmatched; /* unmatched[posInUnmatched[u]]=u */
    igraph_vector_int_t path;

    if (sizeOfU > sizeOfV) {
        *invalid = 1; /* trivial case of infeasibility */
        return 0;
    }

    ALLOC_ARRAY(matchedWithV, sizeOfV, int);
    ALLOC_ARRAY(nbPred, sizeOfV, int);
    ALLOC_ARRAY(pred, sizeOfV * sizeOfU, int);
    ALLOC_ARRAY(nbSucc, sizeOfU, int);
    ALLOC_ARRAY(succ, sizeOfU * sizeOfV, int);
    ALLOC_ARRAY(listV, sizeOfV, int);
    ALLOC_ARRAY(listU, sizeOfU, int);
    ALLOC_ARRAY(listDV, sizeOfV, int);
    ALLOC_ARRAY(listDU, sizeOfU, int);
    ALLOC_ARRAY(markedV, sizeOfV, int);
    ALLOC_ARRAY(markedU, sizeOfU, int);
    ALLOC_ARRAY(unmatched, sizeOfU, int);
    ALLOC_ARRAY(posInUnmatched, sizeOfU, int);

    IGRAPH_CHECK(igraph_vector_int_init(&path, 0));
    IGRAPH_FINALLY(igraph_vector_int_destroy, &path);

    /* initialize matchedWithV and unmatched */
    memset(matchedWithV, -1, (size_t)sizeOfV * sizeof(int));
    for (u = 0; u < sizeOfU; u++) {
        if (VECTOR(*matchedWithU)[u] >= 0) {
            matchedWithV[VECTOR(*matchedWithU)[u]] = u;
        } else {
            posInUnmatched[u] = nbUnmatched;
            unmatched[nbUnmatched++] = u;
        }
    }
    /* try to match unmatched vertices of U with free vertices of V */
    j = 0;
    while (j < nbUnmatched) {
        u = unmatched[j];
        for (i = VECTOR(*firstAdj)[u];
             ((i < VECTOR(*firstAdj)[u] + VECTOR(*degree)[u]) &&
              (matchedWithV[VECTOR(*adj)[i]] >= 0)); i++) { }
        if (i == VECTOR(*firstAdj)[u] + VECTOR(*degree)[u]) {
            j++; /* no free vertex for u */
        } else {
            v = VECTOR(*adj)[i]; /* v is free => match u with v */
            VECTOR(*matchedWithU)[u] = v;
            matchedWithV[v] = u;
            unmatched[j] = unmatched[--nbUnmatched];
            posInUnmatched[unmatched[j]] = j;
        }
    }

    while (nbUnmatched > 0) {
        /* Try to increase the number of matched vertices */
        /* step 1 : build the DAG */
        memset(markedU, white, (size_t) sizeOfU * sizeof(int));
        memset(nbSucc, 0, (size_t) sizeOfU * sizeof(int));
        memset(markedV, white, (size_t) sizeOfV * sizeof(int));
        memset(nbPred, 0, (size_t) sizeOfV * sizeof(int));
        /* first layer of the DAG from the free nodes of U */
        nbV = 0;
        for (j = 0; j < nbUnmatched; j++) {
            u = unmatched[j]; /* u is a free node of U */
            markedU[u] = black;
            for (i = VECTOR(*firstAdj)[u];
                 i < VECTOR(*firstAdj)[u] + VECTOR(*degree)[u]; i++) {
                v = VECTOR(*adj)[i]; /* add edge (u, v) to the DAG */
                pred[v * sizeOfU + (nbPred[v]++)] = u;
                succ[u * sizeOfV + (nbSucc[u]++)] = v;
                if (markedV[v] == white) { /* first time v is added to the DAG*/
                    markedV[v] = grey;
                    listV[nbV++] = v;
                }
            }
        }
        stop = 0;
        while ((stop == 0) && (nbV > 0)) {
            /* build next layer from nodes of V to nodes of U */
            nbU = 0;
            for (i = 0; i < nbV; i++) {
                v = listV[i];
                markedV[v] = black;
                u = matchedWithV[v];
                if (markedU[u] == white) { /* edge (v, u) belongs to the DAG */
                    markedU[u] = grey;
                    listU[nbU++] = u;
                }
            }
            /* build next layer from nodes of U to nodes of V */
            nbV = 0;
            for (j = 0; j < nbU; j++) {
                u = listU[j];
                markedU[u] = black;
                for (i = VECTOR(*firstAdj)[u];
                     i < VECTOR(*firstAdj)[u] + VECTOR(*degree)[u]; i++) {
                    v = VECTOR(*adj)[i];
                    if (markedV[v] != black) { /* add edge (u, v) to the DAG */
                        pred[v * sizeOfU + (nbPred[v]++)] = u;
                        succ[u * sizeOfV + (nbSucc[u]++)] = v;
                        if (markedV[v] == white) { /* first time v is added to the DAG */
                            markedV[v] = grey;
                            listV[nbV++] = v;
                        }
                        if (matchedWithV[v] == -1) { /* we have found a free node ! */
                            stop = 1;
                        }
                    }
                }
            }
        }
        if (nbV == 0) {
            *invalid = 1;
            /* I know it's ugly. */
            goto cleanup;
        }

        /* step 2: look for augmenting paths */
        for (k = 0; k < nbV; k++) {
            v = listV[k];
            if ((matchedWithV[v] == -1) && (nbPred[v] > 0)) {
                /* v is the final node of an augmenting path */
                IGRAPH_CHECK(igraph_vector_int_resize(&path, 1));
                VECTOR(path)[0] = v;
                nbDV = 0;
                nbDU = 0;
                igraph_i_lad_addToDelete(v, listDV, &nbDV, markedV);
                do {
                    u = pred[v * sizeOfU + 0]; /* (u, v) belongs to the augmenting path */
                    IGRAPH_CHECK(igraph_vector_int_push_back(&path, u));
                    igraph_i_lad_addToDelete(u, listDU, &nbDU, markedU);
                    if (VECTOR(*matchedWithU)[u] != -1) {
                        /* u is not the initial node of the augmenting path */
                        v = VECTOR(*matchedWithU)[u]; /* (v, u) belongs to the
                                           augmenting path */
                        IGRAPH_CHECK(igraph_vector_int_push_back(&path, v));
                        igraph_i_lad_addToDelete(v, listDV, &nbDV, markedV);
                    }
                } while (VECTOR(*matchedWithU)[u] != -1);

                /* delete nodes of listDV and listDU */
                while ((nbDV > 0) || (nbDU > 0)) {
                    while (nbDV > 0) { /* delete v */
                        v = listDV[--nbDV]; markedV[v] = deleted;
                        u = matchedWithV[v];
                        if (u != -1) {
                            igraph_i_lad_addToDelete(u, listDU, &nbDU, markedU);
                        }
                        for (i = 0; i < nbPred[v]; i++) {
                            u = pred[v * sizeOfU + i]; /* delete edge (u, v) */
                            for (j = 0; ((j < nbSucc[u]) && (v != succ[u * sizeOfV + j])); j++) { }
                            succ[u * sizeOfV + j] = succ[u * sizeOfV + (--nbSucc[u])];
                            if (nbSucc[u] == 0) {
                                igraph_i_lad_addToDelete(u, listDU, &nbDU, markedU);
                            }
                        }
                    }
                    while (nbDU > 0) { /* delete u */
                        u = listDU[--nbDU]; markedU[u] = deleted;
                        v = VECTOR(*matchedWithU)[u];
                        if (v != -1) {
                            igraph_i_lad_addToDelete(v, listDV, &nbDV, markedV);
                        }
                        j = 0;
                        for (i = 0; i < nbSucc[u]; i++) { /* delete edge (u, v) */
                            v = succ[u * sizeOfV + i];
                            for (j = 0; ((j < nbPred[v]) && (u != pred[v * sizeOfU + j])); j++) { }
                            pred[v * sizeOfU + j] = pred[v * sizeOfU + (--nbPred[v])];
                            if (nbPred[v] == 0) {
                                igraph_i_lad_addToDelete(v, listDV, &nbDV, markedV);
                            }
                        }
                    }
                }
                /* Remove the last node of the augmenting path from the set of
                   unmatched vertices */
                u = VECTOR(path)[igraph_vector_int_size(&path) - 1];
                i = posInUnmatched[u];
                unmatched[i] = unmatched[--nbUnmatched];
                posInUnmatched[unmatched[i]] = i;
                /* Update the matching wrt the augmenting path */
                while (igraph_vector_int_size(&path) > 1) {
                    u = igraph_vector_int_pop_back(&path);
                    v = igraph_vector_int_pop_back(&path);
                    w = matchedWithV[v]; /* match v with u instead of v with w */
                    VECTOR(*matchedWithU)[u] = v;
                    matchedWithV[v] = u;
                }
            }
        }
    }
    *invalid = 0;

cleanup:
    /* Free the allocated arrays */
    igraph_vector_int_destroy(&path);
    igraph_free(posInUnmatched);
    igraph_free(unmatched);
    igraph_free(markedU);
    igraph_free(markedV);
    igraph_free(listDU);
    igraph_free(listDV);
    igraph_free(listU);
    igraph_free(listV);
    igraph_free(succ);
    igraph_free(nbSucc);
    igraph_free(pred);
    igraph_free(nbPred);
    igraph_free(matchedWithV);
    IGRAPH_FINALLY_CLEAN(14);
    return 0;
}

void igraph_i_lad_DFS(int nbU, int nbV, int u, bool* marked, int* nbSucc,
                      int* succ, igraph_vector_int_t * matchedWithU,
                      int* order, int* nb) {
    /* perform a depth first search, starting from u, in the bipartite
       graph Go=(U, V, E) such that
       U = vertices of Gp
       V = vertices of Gt
       E = { (u, matchedWithU[u]) / u is a vertex of Gp } U
           { (v, u) / v is a vertex of D[u] which is not matched to v}

       Given a vertex v of Gt, nbSucc[v]=number of successors of v and
       succ[v]=list of successors of v. order[nb^out+1..nb^in] contains
       the vertices discovered by the DFS */
    int i;
    int v = VECTOR(*matchedWithU)[u]; /* the only one predecessor of v is u */
    marked[u] = true;
    if (v >= 0) {
        for (i = 0; i < nbSucc[v]; i++) {
            if (!marked[succ[v * nbU + i]]) {
                igraph_i_lad_DFS(nbU, nbV, succ[v * nbU + i], marked, nbSucc, succ,
                                 matchedWithU, order, nb);
            }
        }
    }
    /* we have finished with u => number it */
    order[*nb] = u; (*nb)--;
}

int igraph_i_lad_SCC(int nbU, int nbV, int* numV, int* numU,
                     int* nbSucc, int* succ,
                     int* nbPred, int* pred,
                     igraph_vector_int_t * matchedWithU,
                     igraph_vector_int_t * matchedWithV) {
    /* postrelation: numV[v]==numU[u] iff they belong to the same
       strongly connected component in the bipartite graph Go=(U, V, E)
       such that
       U = vertices of Gp
       V = vertices of Gt
       E = { (u, matchedWithU[u]) / u is a vertex of Gp } U
           { (v, u) / v is a vertex of D[u] which is not matched to v}

       Given a vertex v of Gt, nbSucc[v]=number of sucessors of v and
       succ[v]=list of successors of v */
    int *order;
    bool *marked;
    int *fifo;
    int u, v, i, j, k, nbSCC, nb;

    /* Allocate memory */
    ALLOC_ARRAY(order, nbU, int);
    ALLOC_ARRAY(marked, nbU, bool);
    ALLOC_ARRAY(fifo, nbV, int);

    /* Order vertices of Gp wrt DFS */
    nb = nbU - 1;
    for (u = 0; u < nbU; u++) {
        if (!marked[u]) {
            igraph_i_lad_DFS(nbU, nbV, u, marked, nbSucc, succ, matchedWithU,
                             order, &nb);
        }
    }

    /* traversal starting from order[0], then order[1], ... */
    nbSCC = 0;
    memset(numU, -1, (size_t) nbU * sizeof(int));
    memset(numV, -1, (size_t) nbV * sizeof(int));
    for (i = 0; i < nbU; i++) {
        u = order[i];
        v = VECTOR(*matchedWithU)[u];
        if (v == -1) {
            continue;
        }
        if (numV[v] == -1) { /* v belongs to a new SCC */
            nbSCC++;
            k = 1; fifo[0] = v;
            numV[v] = nbSCC;
            while (k > 0) {
                v = fifo[--k];
                u = VECTOR(*matchedWithV)[v];
                if (u != -1) {
                    numU[u] = nbSCC;
                    for (j = 0; j < nbPred[u]; j++) {
                        v = pred[u * nbV + j];
                        if (numV[v] == -1) {
                            numV[v] = nbSCC;
                            fifo[k++] = v;
                        }
                    }
                }
            }
        }
    }

    /* Free memory */
    igraph_free(fifo);
    igraph_free(marked);
    igraph_free(order);
    IGRAPH_FINALLY_CLEAN(3);

    return 0;
}


int igraph_i_lad_ensureGACallDiff(bool induced, Tgraph* Gp, Tgraph* Gt,
                                  Tdomain* D, int *invalid) {
    /* precondition: D->globalMatchingP is an all different matching of
       the pattern vertices
       postcondition: filter domains wrt GAC(allDiff)
       return false if an inconsistency is detected; true otherwise

       Build the bipartite directed graph Go=(U, V, E) such that
       E = { (u, v) / u is a vertex of Gp which is matched to v (i.e.,
              v=D->globalMatchingP[u])} U
           { (v, u) / v is a vertex of Gt which is in D(u) but is not
             matched to u} */
    int *nbPred;                 /* nbPred[u] = nb of predecessors of u in Go */
    int *pred;                                /* pred[u][i] = ith
                                               predecessor of u in Go */
    int *nbSucc;                 /* nbSucc[v] = nb of successors of v in Go */
    int *succ;                                /* succ[v][i] = ith
                                               successor of v in Go */
    int u, v, i, w, oldNbVal, nbToMatch;
    int *numV, *numU;
    igraph_vector_int_t toMatch;
    bool *used;
    int *list;
    int nb = 0;
    bool result;

    /* Allocate memory */
    ALLOC_ARRAY(nbPred, Gp->nbVertices, int);
    ALLOC_ARRAY(pred, Gp->nbVertices * Gt->nbVertices, int);
    ALLOC_ARRAY(nbSucc, Gt->nbVertices, int);
    ALLOC_ARRAY(succ, Gt->nbVertices * Gp->nbVertices, int);
    ALLOC_ARRAY(numV, Gt->nbVertices, int);
    ALLOC_ARRAY(numU, Gp->nbVertices, int);
    ALLOC_ARRAY(used, Gp->nbVertices * Gt->nbVertices, bool);
    ALLOC_ARRAY(list, Gt->nbVertices, int);
    IGRAPH_CHECK(igraph_vector_int_init(&toMatch, Gp->nbVertices));
    IGRAPH_FINALLY(igraph_vector_int_destroy, &toMatch);

    for (u = 0; u < Gp->nbVertices; u++) {
        for (i = 0; i < VECTOR(D->nbVal)[u]; i++) {
            v = VECTOR(D->val)[ VECTOR(D->firstVal)[u] + i ]; /* v in D(u) */
            used[u * Gt->nbVertices + v] = false;
            if (v != VECTOR(D->globalMatchingP)[u]) {
                pred[u * Gt->nbVertices + (nbPred[u]++)] = v;
                succ[v * Gp->nbVertices + (nbSucc[v]++)] = u;
            }
        }
    }

    /* mark as used all edges of paths starting from free vertices */
    for (v = 0; v < Gt->nbVertices; v++) {
        if (VECTOR(D->globalMatchingT)[v] < 0) { /* v is free */
            list[nb++] = v;
            numV[v] = true;
        }
    }
    while (nb > 0) {
        v = list[--nb];
        for (i = 0; i < nbSucc[v]; i++) {
            u = succ[v * Gp->nbVertices + i];
            used[u * Gt->nbVertices + v] = true;
            if (numU[u] == false) {
                numU[u] = true;
                w = VECTOR(D->globalMatchingP)[u];
                used[u * Gt->nbVertices + w] = true;
                if (numV[w] == false) {
                    list[nb++] = w;
                    numV[w] = true;
                }
            }
        }
    }

    /* look for strongly connected components in Go */
    IGRAPH_CHECK(
        igraph_i_lad_SCC((int)(Gp->nbVertices), (int)(Gt->nbVertices), numV, numU,
                         nbSucc, succ, nbPred, pred, &D->globalMatchingP, &D->globalMatchingT));

    /* remove v from D[u] if (u, v) is not marked as used
                          and u and v are not in the same SCC
                          and D->globalMatchingP[u] != v */
    nbToMatch = 0;
    for (u = 0; u < Gp->nbVertices; u++) {
        oldNbVal = VECTOR(D->nbVal)[u];
        for (i = 0; i < VECTOR(D->nbVal)[u]; i++) {
            v = VECTOR(D->val)[ VECTOR(D->firstVal)[u] + i ]; /* v in D(u) */
            if ((!used[u * Gt->nbVertices + v]) && (numV[v] != numU[u]) &&
                (VECTOR(D->globalMatchingP)[u] != v)) {
                IGRAPH_CHECK(igraph_i_lad_removeValue(u, v, D, Gp, Gt, &result));
                if (!result) {
                    *invalid = 1;
                    /* Yes, this is ugly. */
                    goto cleanup;
                }
            }
        }
        if (VECTOR(D->nbVal)[u] == 0) {
            *invalid = 1;
            /* Yes, this is ugly. */
            goto cleanup;
        }
        if ((oldNbVal > 1) && (VECTOR(D->nbVal)[u] == 1)) {
            VECTOR(toMatch)[nbToMatch++] = u;
        }
    }
    IGRAPH_CHECK(igraph_i_lad_matchVertices(nbToMatch, &toMatch, induced,
                                            D, Gp, Gt, invalid));

cleanup:
    igraph_vector_int_destroy(&toMatch);
    igraph_free(list);
    igraph_free(used);
    igraph_free(numU);
    igraph_free(numV);
    igraph_free(succ);
    igraph_free(nbSucc);
    igraph_free(pred);
    igraph_free(nbPred);
    IGRAPH_FINALLY_CLEAN(9);

    return 0;
}

/* ---------------------------------------------------------*/
/* Coming from lad.c                                        */
/* ---------------------------------------------------------*/

int igraph_i_lad_checkLAD(int u, int v, Tdomain* D, Tgraph* Gp, Tgraph* Gt,
                          bool *result) {
    /* return true if G_(u, v) has a adj(u)-covering matching; false
       otherwise */
    int u2, v2, i, j;
    int nbMatched = 0;
    igraph_vector_int_t *Gp_uneis = igraph_adjlist_get(&Gp->succ, u);

    int *num, *numInv;
    igraph_vector_int_t nbComp;
    igraph_vector_int_t firstComp;
    igraph_vector_int_t comp;
    int nbNum = 0;
    int posInComp = 0;
    igraph_vector_int_t matchedWithU;
    int invalid;

    /* special case when u has only 1 adjacent node => no need to call
       Hopcroft and Karp */
    if (VECTOR(Gp->nbSucc)[u] == 1) {
        u2 = (int) VECTOR(*Gp_uneis)[0]; /* u2 is the only node adjacent to u */
        v2 = VECTOR(D->matching)[ MATRIX(D->firstMatch, u, v) ];
        if ((v2 != -1) && (igraph_i_lad_isInD(u2, v2, D))) {
            *result = true;
            return 0;
        }
        /* look for a support of edge (u, u2) for v */
        for (i = VECTOR(D->firstVal)[u2];
             i < VECTOR(D->firstVal)[u2] + VECTOR(D->nbVal)[u2]; i++) {
            if (MATRIX(Gt->isEdge, v, VECTOR(D->val)[i])) {
                VECTOR(D->matching)[ MATRIX(D->firstMatch, u, v) ] =
                    VECTOR(D->val)[i];
                *result = true;
                return 0;
            }
        }
        *result = false;
        return 0;
    }

    /* general case (when u has more than 1 adjacent node) */
    for (i = 0; i < VECTOR(Gp->nbSucc)[u]; i++) {
        /* remove from the matching of G_(u, v) edges which no longer
           belong to G_(u, v) */
        u2 = (int) VECTOR(*Gp_uneis)[i];
        v2 = VECTOR(D->matching)[ MATRIX(D->firstMatch, u, v) + i];
        if ((v2 != -1) && (igraph_i_lad_isInD(u2, v2, D))) {
            nbMatched++;
        }
    }
    if (nbMatched == VECTOR(Gp->nbSucc)[u]) {
        *result = true;
        return 0;
    } /* The matching still covers adj(u) */

    /* Allocate memory */
    ALLOC_ARRAY(num, Gt->nbVertices, int);
    ALLOC_ARRAY(numInv, Gt->nbVertices, int);

    /* Build the bipartite graph
       let U be the set of nodes adjacent to u
       let V be the set of nodes that are adjacent to v, and that belong
       to domains of nodes of U */
    /* nbComp[u]=number of elements of V that are compatible with u */
    IGRAPH_CHECK(igraph_vector_int_init(&nbComp, (long int) VECTOR(Gp->nbSucc)[u]));
    IGRAPH_FINALLY(igraph_vector_int_destroy, &nbComp);
    IGRAPH_CHECK(igraph_vector_int_init(&firstComp, (long int) VECTOR(Gp->nbSucc)[u]));
    IGRAPH_FINALLY(igraph_vector_int_destroy, &firstComp);
    /* comp[firstComp[u]..firstComp[u]+nbComp[u]-1] = nodes of Gt that
       are compatible with u */
    IGRAPH_CHECK(igraph_vector_int_init(&comp, (long int) (VECTOR(Gp->nbSucc)[u] *
                                        Gt->nbVertices)));
    IGRAPH_FINALLY(igraph_vector_int_destroy, &comp);
    IGRAPH_CHECK(igraph_vector_int_init(&matchedWithU, (long int) VECTOR(Gp->nbSucc)[u]));
    IGRAPH_FINALLY(igraph_vector_int_destroy, &matchedWithU);
    memset(num, -1, (size_t) (Gt->nbVertices) * sizeof(int));
    for (i = 0; i < VECTOR(Gp->nbSucc)[u]; i++) {
        u2 = (int) VECTOR(*Gp_uneis)[i]; /* u2 is adjacent to u */
        /* search for all nodes v2 in D[u2] which are adjacent to v */
        VECTOR(nbComp)[i] = 0;
        VECTOR(firstComp)[i] = posInComp;
        if (VECTOR(D->nbVal)[u2] > VECTOR(Gt->nbSucc)[v]) {
            for (j = VECTOR(D->firstVal)[u2];
                 j < VECTOR(D->firstVal)[u2] + VECTOR(D->nbVal)[u2]; j++) {
                v2 = VECTOR(D->val)[j]; /* v2 belongs to D[u2] */
                if (MATRIX(Gt->isEdge, v, v2)) { /* v2 is a successor of v */
                    if (num[v2] < 0) { /* v2 has not yet been added to V */
                        num[v2] = nbNum;
                        numInv[nbNum++] = v2;
                    }
                    VECTOR(comp)[posInComp++] = num[v2];
                    VECTOR(nbComp)[i]++;
                }
            }
        } else {
            igraph_vector_int_t *Gt_vneis = igraph_adjlist_get(&Gt->succ, v);
            for (j = 0; j < VECTOR(Gt->nbSucc)[v]; j++) {
                v2 = (int) VECTOR(*Gt_vneis)[j]; /* v2 is a successor of v */
                if (igraph_i_lad_isInD(u2, v2, D)) { /* v2 belongs to D[u2] */
                    if (num[v2] < 0) { /* v2 has not yet been added to V */
                        num[v2] = nbNum;
                        numInv[nbNum++] = v2;
                    }
                    VECTOR(comp)[posInComp++] = num[v2];
                    VECTOR(nbComp)[i]++;
                }
            }
        }
        if (VECTOR(nbComp)[i] == 0) {
            *result = false; /* u2 has no compatible vertex in succ[v] */
            goto cleanup;
        }
        /* u2 is matched to v2 in the matching that supports (u, v) */
        v2 = VECTOR(D->matching)[ MATRIX(D->firstMatch, u, v) + i];
        if ((v2 != -1) && (igraph_i_lad_isInD(u2, v2, D))) {
            VECTOR(matchedWithU)[i] = num[v2];
        } else {
            VECTOR(matchedWithU)[i] = -1;
        }
    }
    /* Call Hopcroft Karp to update the matching */
    IGRAPH_CHECK(
        igraph_i_lad_updateMatching((int) VECTOR(Gp->nbSucc)[u], nbNum, &nbComp,
                                    &firstComp, &comp, &matchedWithU, &invalid)
    );
    if (invalid) {
        *result = false;
        goto cleanup;
    }
    for (i = 0; i < VECTOR(Gp->nbSucc)[u]; i++) {
        VECTOR(D->matching)[ MATRIX(D->firstMatch, u, v) + i] =
            numInv[ VECTOR(matchedWithU)[i] ];
    }
    *result = true;

cleanup:
    igraph_free(numInv);
    igraph_free(num);
    igraph_vector_int_destroy(&matchedWithU);
    igraph_vector_int_destroy(&comp);
    igraph_vector_int_destroy(&firstComp);
    igraph_vector_int_destroy(&nbComp);
    IGRAPH_FINALLY_CLEAN(6);

    return 0;
}

/* ---------------------------------------------------------*/
/* Coming from main.c                                      */
/* ---------------------------------------------------------*/

int igraph_i_lad_filter(bool induced, Tdomain* D, Tgraph* Gp, Tgraph* Gt,
                        bool *result) {
    /* filter domains of all vertices in D->toFilter wrt LAD and ensure
       GAC(allDiff)
       return false if some domain becomes empty; true otherwise */
    int u, v, i, oldNbVal;
    int invalid;
    bool result2;
    while (!igraph_i_lad_toFilterEmpty(D)) {
        while (!igraph_i_lad_toFilterEmpty(D)) {
            u = igraph_i_lad_nextToFilter(D, (int) (Gp->nbVertices));
            oldNbVal = VECTOR(D->nbVal)[u];
            i = VECTOR(D->firstVal)[u];
            while (i < VECTOR(D->firstVal)[u] + VECTOR(D->nbVal)[u]) {
                /* for every target node v in D(u), check if G_(u, v) has a
                   covering matching */
                v = VECTOR(D->val)[i];
                IGRAPH_CHECK(igraph_i_lad_checkLAD(u, v, D, Gp, Gt, &result2));
                if (result2) {
                    i++;
                } else {
                    IGRAPH_CHECK(igraph_i_lad_removeValue(u, v, D, Gp, Gt, &result2));
                    if (!result2) {
                        *result = false;
                        return 0;
                    }
                }
            }
            if ((VECTOR(D->nbVal)[u] == 1) && (oldNbVal > 1) &&
                (!igraph_i_lad_matchVertex(u, induced, D, Gp, Gt))) {
                *result = false; return 0;
            }
            if (VECTOR(D->nbVal)[u] == 0) {
                *result = false;
                return 0;
            }
        }
        igraph_i_lad_ensureGACallDiff(induced, Gp, Gt, D, &invalid);
        if (invalid) {
            *result = false;
            return 0;
        }
    }
    *result = true;
    return 0;
}



int igraph_i_lad_solve(int timeLimit, bool firstSol, bool induced,
                       Tdomain* D, Tgraph* Gp, Tgraph* Gt,
                       int *invalid, igraph_bool_t *iso,
                       igraph_vector_t *map, igraph_vector_ptr_t *maps,
                       int *nbNodes, int *nbFail, int *nbSol,
                       clock_t *begin, igraph_vector_ptr_t *alloc_history) {
    /* if firstSol then search for the first solution; otherwise search
       for all solutions if induced then search for induced subgraphs;
       otherwise search for partial subgraphs
       return false if CPU time limit exceeded before the search is
       completed, return true otherwise */

    int u, v, minDom, i;
    int* nbVal;
    int* globalMatching;
    clock_t end = clock();
    igraph_vector_t *vec;
    int* val;
    bool result;

    (*nbNodes)++;

    if ( (double)(end - *begin) / CLOCKS_PER_SEC >= timeLimit) {
        /* CPU time limit exceeded */
        IGRAPH_ERROR("LAD CPU time exceeded", IGRAPH_CPUTIME);
    }

    /* Allocate memory */
    ALLOC_ARRAY_IN_HISTORY(nbVal, Gp->nbVertices, int, alloc_history);
    ALLOC_ARRAY_IN_HISTORY(globalMatching, Gp->nbVertices, int, alloc_history);

    IGRAPH_CHECK(igraph_i_lad_filter(induced, D, Gp, Gt, &result));
    if (!result) {
        /* filtering has detected an inconsistency */
        (*nbFail)++;
        igraph_i_lad_resetToFilter(D);
        *invalid = 0;
        goto cleanup;
    }

    /* The current node of the search tree is consistent wrt to LAD and
       GAC(allDiff) Save domain sizes and global all different matching
       and search for the non matched vertex minDom with smallest domain */
    minDom = -1;
    for (u = 0; u < Gp->nbVertices; u++) {
        nbVal[u] = VECTOR(D->nbVal)[u];
        if ((nbVal[u] > 1) && ((minDom < 0) || (nbVal[u] < nbVal[minDom]))) {
            minDom = u;
        }
        globalMatching[u] = VECTOR(D->globalMatchingP)[u];
    }

    if (minDom == -1) {
        /* All vertices are matched => Solution found */
        if (iso) {
            *iso = 1;
        }
        (*nbSol)++;
        if (map && igraph_vector_size(map) == 0) {
            IGRAPH_CHECK(igraph_vector_resize(map, Gp->nbVertices));
            for (u = 0; u < Gp->nbVertices; u++) {
                VECTOR(*map)[u] = VECTOR(D->val)[ VECTOR(D->firstVal)[u] ];
            }
        }
        if (maps) {
            vec = igraph_Calloc(1, igraph_vector_t);
            if (!vec) {
                IGRAPH_ERROR("LAD failed", IGRAPH_ENOMEM);
            }
            IGRAPH_FINALLY(igraph_free, vec);
            IGRAPH_CHECK(igraph_vector_init(vec, Gp->nbVertices));
            IGRAPH_FINALLY(igraph_vector_destroy, vec);
            for (u = 0; u < Gp->nbVertices; u++) {
                VECTOR(*vec)[u] = VECTOR(D->val)[ VECTOR(D->firstVal)[u] ];
            }
            IGRAPH_CHECK(igraph_vector_ptr_push_back(maps, vec));
            IGRAPH_FINALLY_CLEAN(2);
        }
        igraph_i_lad_resetToFilter(D);
        *invalid = 0;
        goto cleanup;
    }

    /* save the domain of minDom to iterate on its values */
    ALLOC_ARRAY_IN_HISTORY(val, VECTOR(D->nbVal)[minDom], int, alloc_history);
    for (i = 0; i < VECTOR(D->nbVal)[minDom]; i++) {
        val[i] = VECTOR(D->val)[ VECTOR(D->firstVal)[minDom] + i ];
    }

    /* branch on minDom=v, for every target node v in D(u) */
    for (i = 0; ((i < nbVal[minDom]) && ((firstSol == 0) || (*nbSol == 0))); i++) {
        IGRAPH_ALLOW_INTERRUPTION();
        v = val[i];
        IGRAPH_CHECK(igraph_i_lad_removeAllValuesButOne(minDom, v, D, Gp, Gt, &result));
        if (!result || (!igraph_i_lad_matchVertex(minDom, induced, D, Gp, Gt))) {
            (*nbFail)++;
            (*nbNodes)++;
            igraph_i_lad_resetToFilter(D);
        } else {
            IGRAPH_CHECK(igraph_i_lad_solve(timeLimit, firstSol, induced,
                                            D, Gp, Gt, invalid, iso, map, maps,
                                            nbNodes, nbFail, nbSol, begin,
                                            alloc_history));
        }
        /* restore domain sizes and global all different matching */
        igraph_vector_int_fill(&D->globalMatchingT, -1);
        for (u = 0; u < Gp->nbVertices; u++) {
            VECTOR(D->nbVal)[u] = nbVal[u];
            VECTOR(D->globalMatchingP)[u] = globalMatching[u];
            VECTOR(D->globalMatchingT)[globalMatching[u]] = u;
        }
    }
    *invalid = 0;

    igraph_free(val);
    igraph_vector_ptr_pop_back(alloc_history);

cleanup:
    igraph_free(globalMatching);
    igraph_vector_ptr_pop_back(alloc_history);
    igraph_free(nbVal);
    igraph_vector_ptr_pop_back(alloc_history);

    return 0;
}

/**
 * \section about_lad
 *
 * <para>
 * The LAD algorithm can search for a subgraph in a larger graph, or check
 * if two graphs are isomorphic.
 * See Christine Solnon: AllDifferent-based Filtering for Subgraph
 * Isomorphism. Artificial Intelligence, 174(12-13):850-864, 2010.
 * https://doi.org/10.1016/j.artint.2010.05.002
 * as well as the homepage of the LAD library at http://liris.cnrs.fr/csolnon/LAD.html
 * The implementation in igraph is based on LADv1, but it is
 * modified to use igraph's own memory allocation and error handling.
 * </para>
 *
 * <para>
 * LAD uses the concept of domains to indicate vertex compatibility when matching the
 * pattern graph. Domains can be used to implement matching of colored vertices.
 * </para>
 *
 * <para>
 * LAD works with both directed and undirected graphs. Only simple graphs are supported.
 * </para>
 */

/**
 * \function igraph_subisomorphic_lad
 * Check subgraph isomorphism with the LAD algorithm
 *
 * Check whether \p pattern is isomorphic to a subgraph os \p target.
 * The original LAD implementation by Christine Solnon was used as the
 * basis of this code.
 *
 * </para><para>
 * See more about LAD at http://liris.cnrs.fr/csolnon/LAD.html and in
 * Christine Solnon: AllDifferent-based Filtering for Subgraph
 * Isomorphism. Artificial Intelligence, 174(12-13):850-864, 2010.
 * https://doi.org/10.1016/j.artint.2010.05.002
 *
 * \param pattern The smaller graph, it can be directed or undirected.
 * \param target The bigger graph, it can be directed or undirected.
 * \param domains A pointer vector, or a null pointer. If a pointer
 *    vector, then it must contain pointers to \c igraph_vector_t
 *    objects and the length of the vector must match the number of
 *    vertices in the \p pattern graph. For each vertex, the ids of
 *    the compatible vertices in the target graph are listed.
 * \param iso Pointer to a boolean, or a null pointer. If not a null
 *    pointer, then the boolean is set to TRUE (1) if a subgraph
 *    isomorphism is found, and to FALSE (0) otherwise.
 * \param map Pointer to a vector or a null pointer. If not a null
 *    pointer and a subgraph isomorphism is found, the matching
 *    vertices from the target graph are listed here, for each vertex
 *    (in vertex id order) from the pattern graph.
 * \param maps Pointer vector or a null pointer. If not a null
 *    pointer, then all subgraph isomorphisms are stored in the
 *    pointer vector, in \c igraph_vector_t objects.
 * \param induced Boolean, whether to search for induced matching
 *    subgraphs.
 * \param time_limit Processor time limit in seconds. Supply zero
 *    here for no limit. If the time limit is over, then the function
 *    signals an error.
 * \return Error code
 *
 * \sa \ref igraph_subisomorphic_vf2() for the VF2 algorithm.
 *
 * Time complexity: exponential.
 *
 * \example examples/simple/igraph_subisomorphic_lad.c
 */

int igraph_subisomorphic_lad(const igraph_t *pattern, const igraph_t *target,
                             igraph_vector_ptr_t *domains,
                             igraph_bool_t *iso, igraph_vector_t *map,
                             igraph_vector_ptr_t *maps,
                             igraph_bool_t induced, int time_limit) {

    bool firstSol = maps == 0;
    bool initialDomains = domains != 0;
    Tgraph Gp, Gt;
    Tdomain D;
    int invalidDomain;
    int u, nbToMatch = 0;
    igraph_vector_int_t toMatch;
    /* Number of nodes in the search tree */
    int nbNodes = 0;
    /* number of failed nodes in the search tree */
    int nbFail = 0;
    /* number of solutions found */
    int nbSol = 0;
    /* reusable structure to get CPU time usage */
    clock_t begin = clock();
    /* Stack to store memory blocks that are allocated during igraph_i_lad_solve */
    igraph_vector_ptr_t alloc_history;

    if (!iso && !map && !maps) {
        IGRAPH_ERROR("Please give least one of `iso', `map' or `maps'",
                     IGRAPH_EINVAL);
    }

    if (igraph_is_directed(pattern) != igraph_is_directed(target)) {
        IGRAPH_ERROR("Cannot search for a directed pattern in an undirected target "
                     "or vice versa", IGRAPH_EINVAL);
    }
    if (time_limit <= 0) {
        time_limit = INT_MAX;
    }

    if (iso)  {
        *iso = (igraph_vcount(pattern) == 0);
    }
    if (map)  {
        igraph_vector_clear(map);
    }
    if (maps) {
        igraph_vector_ptr_clear(maps);
    }

    if (igraph_vcount(pattern) == 0) {
        /* Special case for empty graphs */
        return IGRAPH_SUCCESS;
    }

    IGRAPH_CHECK(igraph_i_lad_createGraph(pattern, &Gp));
    IGRAPH_CHECK(igraph_i_lad_createGraph(target, &Gt));

    if (Gp.nbVertices > Gt.nbVertices) {
        goto exit3;
    }

    IGRAPH_CHECK(igraph_i_lad_initDomains(initialDomains, domains, &D, &Gp,
                                          &Gt, &invalidDomain));
    if (invalidDomain) {
        goto exit2;
    }

    IGRAPH_CHECK(igraph_i_lad_updateMatching((int) (Gp.nbVertices),
                 (int) (Gt.nbVertices),
                 &D.nbVal, &D.firstVal, &D.val,
                 &D.globalMatchingP,
                 &invalidDomain));
    if (invalidDomain) {
        goto exit;
    }

    IGRAPH_CHECK(igraph_i_lad_ensureGACallDiff((char) induced, &Gp, &Gt, &D,
                 &invalidDomain));
    if (invalidDomain) {
        goto exit;
    }

    for (u = 0; u < Gp.nbVertices; u++) {
        VECTOR(D.globalMatchingT)[ VECTOR(D.globalMatchingP)[u] ] = u;
    }

    IGRAPH_CHECK(igraph_vector_int_init(&toMatch, Gp.nbVertices));
    IGRAPH_FINALLY(igraph_vector_int_destroy, &toMatch);

    for (u = 0; u < Gp.nbVertices; u++) {
        if (VECTOR(D.nbVal)[u] == 1) {
            VECTOR(toMatch)[nbToMatch++] = u;
        }
    }
    IGRAPH_CHECK(igraph_i_lad_matchVertices(nbToMatch, &toMatch, (char) induced,
                                            &D, &Gp, &Gt, &invalidDomain));
    igraph_vector_int_destroy(&toMatch);
    IGRAPH_FINALLY_CLEAN(1);
    if (invalidDomain) {
        goto exit;
    }

    IGRAPH_CHECK(igraph_vector_ptr_init(&alloc_history, 0));
    IGRAPH_FINALLY(igraph_vector_ptr_destroy_all, &alloc_history);

    IGRAPH_CHECK(igraph_i_lad_solve(time_limit, firstSol, (char) induced, &D,
                                    &Gp, &Gt, &invalidDomain, iso, map, maps,
                                    &nbNodes, &nbFail, &nbSol, &begin,
                                    &alloc_history));

    igraph_vector_ptr_destroy_all(&alloc_history);
    IGRAPH_FINALLY_CLEAN(1);

exit:

    igraph_vector_int_destroy(&D.val);
    igraph_vector_int_destroy(&D.matching);
    IGRAPH_FINALLY_CLEAN(2);

exit2:

    igraph_vector_int_destroy(&D.globalMatchingP);
    igraph_vector_int_destroy(&D.globalMatchingT);
    igraph_vector_int_destroy(&D.nbVal);
    igraph_vector_int_destroy(&D.firstVal);
    igraph_matrix_int_destroy(&D.posInVal);
    igraph_matrix_int_destroy(&D.firstMatch);
    igraph_vector_char_destroy(&D.markedToFilter);
    igraph_vector_int_destroy(&D.toFilter);
    IGRAPH_FINALLY_CLEAN(8);

exit3:

    igraph_matrix_char_destroy(&Gt.isEdge);
    igraph_adjlist_destroy(&Gt.succ);
    igraph_vector_destroy(&Gt.nbSucc);
    igraph_matrix_char_destroy(&Gp.isEdge);
    igraph_adjlist_destroy(&Gp.succ);
    igraph_vector_destroy(&Gp.nbSucc);
    IGRAPH_FINALLY_CLEAN(6);

    return 0;
}