/* * CXSPARSE: a Concise Sparse Matrix package - Extended. * Copyright (c) 2006-2009, Timothy A. Davis. * http://www.cise.ufl.edu/research/sparse/CXSparse * * CXSparse is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * CXSparse is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this Module; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "cs.h" /* column counts of LL'=A or LL'=A'A, given parent & post ordering */ #define HEAD(k,j) (ata ? head [k] : j) #define NEXT(J) (ata ? next [J] : -1) static void init_ata (cs *AT, const CS_INT *post, CS_INT *w, CS_INT **head, CS_INT **next) { CS_INT i, k, p, m = AT->n, n = AT->m, *ATp = AT->p, *ATi = AT->i ; *head = w+4*n, *next = w+5*n+1 ; for (k = 0 ; k < n ; k++) w [post [k]] = k ; /* invert post */ for (i = 0 ; i < m ; i++) { for (k = n, p = ATp[i] ; p < ATp[i+1] ; p++) k = CS_MIN (k, w [ATi[p]]); (*next) [i] = (*head) [k] ; /* place row i in linked list k */ (*head) [k] = i ; } } CS_INT *cs_counts (const cs *A, const CS_INT *parent, const CS_INT *post, CS_INT ata) { CS_INT i, j, k, n, m, J, s, p, q, jleaf, *ATp, *ATi, *maxfirst, *prevleaf, *ancestor, *head = NULL, *next = NULL, *colcount, *w, *first, *delta ; cs *AT ; if (!CS_CSC (A) || !parent || !post) return (NULL) ; /* check inputs */ m = A->m ; n = A->n ; s = 4*n + (ata ? (n+m+1) : 0) ; delta = colcount = cs_malloc (n, sizeof (CS_INT)) ; /* allocate result */ w = cs_malloc (s, sizeof (CS_INT)) ; /* get workspace */ AT = cs_transpose (A, 0) ; /* AT = A' */ if (!AT || !colcount || !w) return (cs_idone (colcount, AT, w, 0)) ; ancestor = w ; maxfirst = w+n ; prevleaf = w+2*n ; first = w+3*n ; for (k = 0 ; k < s ; k++) w [k] = -1 ; /* clear workspace w [0..s-1] */ for (k = 0 ; k < n ; k++) /* find first [j] */ { j = post [k] ; delta [j] = (first [j] == -1) ? 1 : 0 ; /* delta[j]=1 if j is a leaf */ for ( ; j != -1 && first [j] == -1 ; j = parent [j]) first [j] = k ; } ATp = AT->p ; ATi = AT->i ; if (ata) init_ata (AT, post, w, &head, &next) ; for (i = 0 ; i < n ; i++) ancestor [i] = i ; /* each node in its own set */ for (k = 0 ; k < n ; k++) { j = post [k] ; /* j is the kth node in postordered etree */ if (parent [j] != -1) delta [parent [j]]-- ; /* j is not a root */ for (J = HEAD (k,j) ; J != -1 ; J = NEXT (J)) /* J=j for LL'=A case */ { for (p = ATp [J] ; p < ATp [J+1] ; p++) { i = ATi [p] ; q = cs_leaf (i, j, first, maxfirst, prevleaf, ancestor, &jleaf); if (jleaf >= 1) delta [j]++ ; /* A(i,j) is in skeleton */ if (jleaf == 2) delta [q]-- ; /* account for overlap in q */ } } if (parent [j] != -1) ancestor [j] = parent [j] ; } for (j = 0 ; j < n ; j++) /* sum up delta's of each child */ { if (parent [j] != -1) colcount [parent [j]] += colcount [j] ; } return (cs_idone (colcount, AT, w, 1)) ; /* success: free workspace */ }