{-# LANGUAGE CPP #-} -- | This module tests Haggle by comparing its results to those of FGL. -- This assumes that FGL is reasonably correct. -- -- The arbitrary instance for GraphPair generates a list of edges and -- then constructs equivalent FGL and Haggle graphs. The quickcheck -- properties for each operation try to ensure that the two implementations -- return the same results. module Main ( main ) where import Test.Framework ( defaultMain, Test ) import Test.Framework.Providers.QuickCheck2 ( testProperty ) import Test.Framework.Providers.HUnit ( hUnitTestToTests ) import Test.HUnit import Test.QuickCheck import Control.Arrow ( first, second ) import qualified Data.Bifunctor as Bi import Control.Monad ( replicateM ) import qualified Data.Foldable as F import qualified Data.List as L import Data.Maybe ( fromJust, isNothing ) import qualified Data.Set as S #if MIN_VERSION_base(4, 11, 0) #else import Data.Monoid ( (<>) ) #endif import qualified Data.Graph.Inductive as FGL import qualified Data.Graph.Haggle as HGL import qualified Data.Graph.Haggle.VertexLabelAdapter as HGL import qualified Data.Graph.Haggle.SimpleBiDigraph as HGL import qualified Data.Graph.Haggle.Algorithms.DFS as HGL import qualified Data.Graph.Haggle.Algorithms.Dominators as HGL -- import Debug.Trace -- debug = flip trace type BaseGraph = FGL.Gr Int () type TestGraph = HGL.VertexLabeledGraph HGL.SimpleBiDigraph Int data GraphPair = GP [(Int, Int)] BaseGraph TestGraph instance Arbitrary GraphPair where arbitrary = sized mkGraphPair instance Show GraphPair where show (GP es _ _) = show es newtype NodeId = NID Int deriving (Show) instance Arbitrary NodeId where arbitrary = sized mkNodeId where mkNodeId n = do i <- choose (0, n) return (NID i) mkGraphPair :: Int -> Gen GraphPair mkGraphPair sz = do nEdges <- choose (2, 2 * sz) srcs <- replicateM nEdges (choose (0, sz)) dsts <- replicateM nEdges (choose (0, sz)) let edges = unique $ zip srcs dsts nids = unique (srcs ++ dsts) ns = zip nids nids bg = FGL.mkGraph ns (map (\(s, d) -> (s, d, ())) edges) (tg, _) = HGL.fromEdgeList HGL.newMSimpleBiDigraph edges return $! GP edges bg tg main :: IO () main = defaultMain tests tests :: [Test.Framework.Test] tests = [ testProperty "prop_sameVertexCount" prop_sameVertexCount , testProperty "prop_sameEdgeCount" prop_sameEdgeCount , testProperty "prop_sameSuccessorsAtLabel" prop_sameSuccessorsAtLabel , testProperty "prop_samePredecessorsAtLabel" prop_samePredecessorsAtLabel , testProperty "prop_dfsSame" prop_dfsSame , testProperty "prop_sameComponents" prop_sameComponents , testProperty "prop_sameNoComponents" prop_sameNoComponents , testProperty "prop_immDominatorsSame" prop_immDominatorsSame , testProperty "prop_dominatorsSame" prop_dominatorsSame ] <> testPatricia prop_sameVertexCount :: GraphPair -> Bool prop_sameVertexCount (GP _ bg tg) = length (FGL.nodes bg) == length (HGL.vertices tg) prop_sameEdgeCount :: GraphPair -> Bool prop_sameEdgeCount (GP _ bg tg) = length (FGL.edges bg) == length (HGL.edges tg) prop_sameSuccessorsAtLabel :: (NodeId, GraphPair) -> Bool prop_sameSuccessorsAtLabel (NID nid, GP _ bg tg) | not (FGL.gelem nid bg) && isNothing (vertexFromLabel tg nid) = True | otherwise = bss == tss where bss = S.fromList $ fmap Just $ FGL.suc bg nid ts = maybe [] (map (HGL.vertexLabel tg) . HGL.successors tg) (vertexFromLabel tg nid) tss = S.fromList ts prop_samePredecessorsAtLabel :: (NodeId, GraphPair) -> Bool prop_samePredecessorsAtLabel (NID nid, GP _ bg tg) | not (FGL.gelem nid bg) && isNothing (vertexFromLabel tg nid) = True | otherwise = bss == tss where bss = S.fromList $ fmap Just $ FGL.pre bg nid ts = maybe [] (map (HGL.vertexLabel tg) . HGL.predecessors tg) (vertexFromLabel tg nid) tss = S.fromList ts -- Note that this is only checking the *set* of vertices reached. Unfortunately, -- verifying the *order* is difficult because there are many valid DFS orders -- (depending on the order edges are stored). A test using the DFS number -- (derived from the depth in the depth-first tree) would be a good complement -- to this. prop_dfsSame :: (NodeId, GraphPair) -> Bool prop_dfsSame (NID root, GP _ bg tg) = S.fromList bres == S.fromList tres where bres = map Just $ FGL.dfs [root] bg v = vertexFromLabel tg root tres = maybe [] (map (HGL.vertexLabel tg) . HGL.dfs tg . (:[])) v prop_immDominatorsSame :: (NodeId, GraphPair) -> Bool prop_immDominatorsSame (NID root, GP _ bg tg) | not (FGL.gelem root bg) && isNothing (vertexFromLabel tg root) = True | otherwise = S.fromList bdoms == S.fromList tdoms where bdoms = FGL.iDom bg root toLabs (v1, v2) = let Just v1l = HGL.vertexLabel tg v1 Just v2l = HGL.vertexLabel tg v2 in (v1l, v2l) tdoms = maybe [] (map toLabs . HGL.immediateDominators tg) (vertexFromLabel tg root) prop_dominatorsSame :: (NodeId, GraphPair) -> Bool prop_dominatorsSame (NID root, GP _ bg tg) | not (FGL.gelem root bg) && isNothing (vertexFromLabel tg root) = True | otherwise = S.fromList (map (first Just) bdoms) == S.fromList (map (first (HGL.vertexLabel tg)) tdoms) where bdoms = map (second (S.fromList . map Just)) $ FGL.dom bg root Just rv = vertexFromLabel tg root tdoms = map (second (S.fromList . map (HGL.vertexLabel tg))) $ HGL.dominators tg rv prop_sameComponents :: GraphPair -> Bool prop_sameComponents (GP _ bg tg) = bcs == tcs where bcs = S.map (S.fromList . map Just) $ S.fromList $ FGL.components bg tcs = S.map (S.fromList . map (HGL.vertexLabel tg)) $ S.fromList $ HGL.components tg prop_sameNoComponents :: GraphPair -> Bool prop_sameNoComponents (GP _ bg tg) = FGL.noComponents bg == HGL.noComponents tg -- Helpers vertexFromLabel :: TestGraph -> Int -> Maybe HGL.Vertex vertexFromLabel g lbl = F.find labelMatch (HGL.vertices g) where labelMatch v = Just lbl == (HGL.vertexLabel g v) unique :: (Ord a) => [a] -> [a] unique = S.toList . S.fromList ---------------------------------------------------------------------- -- Explicit tests for various functionality testPatricia :: [Test.Framework.Test] testPatricia = let gr0 = foldl (\g -> snd . HGL.insertLabeledVertex g) (HGL.emptyGraph :: HGL.PatriciaTree Int Char) [1,2,4,3,5,0] vs = fst <$> HGL.labeledVertices gr0 gr1 = foldl (\g (f,t,l) -> snd $ fromJust $ HGL.insertLabeledEdge g f t l) gr0 [ (vs !! 1, vs !! 2, 'a') , (vs !! 0, vs !! 2, 'b') , (vs !! 1, vs !! 5, 'c') ] in hUnitTestToTests $ test [ "create graph" ~: do sum (snd <$> HGL.labeledVertices gr1) @?= 15 L.sort (snd <$> HGL.labeledEdges gr1) @?= "abc" , "bifunctor first (nodes)" ~: do let gr2 = Bi.first (+3) gr1 sum (snd <$> HGL.labeledVertices gr2) @?= 33 L.sort (snd <$> HGL.labeledEdges gr2) @?= "abc" , "bifunctor second (edges)" ~: do let gr2 = Bi.second (succ . succ . succ) gr1 sum (snd <$> HGL.labeledVertices gr2) @?= 15 L.sort (snd <$> HGL.labeledEdges gr2) @?= "def" , "bifunctor bimap" ~: do let gr2 = Bi.bimap (+2) (succ . succ) gr1 sum (snd <$> HGL.labeledVertices gr2) @?= 27 L.sort (snd <$> HGL.labeledEdges gr2) @?= "cde" ]