{-# LANGUAGE TypeFamilies, BangPatterns #-} -- | This graph is based on the implementation in fgl (using -- big-endian patricia-tries -- IntMap). -- -- This formulation does not support parallel edges. module Data.Graph.Haggle.PatriciaTree ( PatriciaTree ) where import Control.DeepSeq import Control.Monad ( guard ) import Data.Bifunctor import Data.Foldable ( toList ) import Data.IntMap ( IntMap ) import qualified Data.IntMap as IM import Data.Maybe ( fromMaybe ) import Data.Monoid import Prelude import qualified Data.Graph.Haggle.Classes as I import qualified Data.Graph.Haggle.Internal.Basic as I data Ctx nl el = Ctx !(IntMap el) I.Vertex nl !(IntMap el) instance (NFData nl, NFData el) => NFData (Ctx nl el) where rnf (Ctx p v nl s) = p `deepseq` s `deepseq` nl `deepseq` v `seq` () -- | The 'PatriciaTree' is a graph implementing the 'I.InductiveGraph' -- interface (as well as the other immutable graph interfaces). It is -- based on the graph type provided by fgl. -- -- Inductive graphs support more interesting decompositions than the -- other graph interfaces in this library, at the cost of less compact -- representations and some additional overhead on some operations, as -- most must go through the 'I.match' operator. -- -- This graph type is most useful for incremental construction in pure -- code. It also supports node removal from pure code. data PatriciaTree nl el = Gr { graphRepr :: IntMap (Ctx nl el) } instance (NFData nl, NFData el) => NFData (PatriciaTree nl el) where rnf (Gr im) = im `deepseq` () instance Bifunctor PatriciaTree where first f (Gr im) = let onNode (Ctx inM v n outM) = Ctx inM v (f n) outM in Gr $ fmap onNode im second f (Gr im) = let onEdge (Ctx inM v n outM) = Ctx (f <$> inM) v n (f <$> outM) in Gr $ fmap onEdge im instance I.Graph (PatriciaTree nl el) where vertices = map I.V . IM.keys . graphRepr isEmpty = IM.null . graphRepr maxVertexId (Gr g) | IM.null g = 0 | otherwise = fst $ IM.findMax g edgesBetween (Gr g) (I.V src) (I.V dst) = toList $ do Ctx _ _ _ ss <- IM.lookup src g guard (IM.member dst ss) return (I.E (-1) src dst) edges g = concatMap (I.outEdges g) (I.vertices g) successors (Gr g) (I.V v) = fromMaybe [] $ do Ctx _ _ _ ss <- IM.lookup v g return $ map I.V $ IM.keys ss outEdges (Gr g) (I.V v) = fromMaybe [] $ do Ctx _ _ _ ss <- IM.lookup v g return $ map toEdge (IM.keys ss) where toEdge d = I.E (-1) v d instance I.HasEdgeLabel (PatriciaTree nl el) where type EdgeLabel (PatriciaTree nl el) = el edgeLabel (Gr g) (I.E _ src dst) = do Ctx _ _ _ ss <- IM.lookup src g IM.lookup dst ss labeledEdges gr = map toLabEdge (I.edges gr) where toLabEdge e = let Just lab = I.edgeLabel gr e in (e, lab) labeledOutEdges (Gr g) (I.V s) = fromMaybe [] $ do Ctx _ _ _ ss <- IM.lookup s g return $ IM.foldrWithKey toOut [] ss where toOut d lbl acc = (I.E (-1) s d, lbl) : acc instance I.HasVertexLabel (PatriciaTree nl el) where type VertexLabel (PatriciaTree nl el) = nl vertexLabel (Gr g) (I.V v) = do Ctx _ _ lbl _ <- IM.lookup v g return lbl labeledVertices gr = map toLabVert (I.vertices gr) where toLabVert v = let Just l = I.vertexLabel gr v in (v, l) instance I.Bidirectional (PatriciaTree nl el) where predecessors (Gr g) (I.V v) = fromMaybe [] $ do Ctx pp _ _ _ <- IM.lookup v g return $ map I.V (IM.keys pp) inEdges (Gr g) (I.V v) = fromMaybe [] $ do Ctx pp _ _ _ <- IM.lookup v g return $ map toEdge (IM.keys pp) where toEdge s = I.E (-1) s v instance I.BidirectionalEdgeLabel (PatriciaTree nl el) where labeledInEdges (Gr g) (I.V d) = fromMaybe [] $ do Ctx pp _ _ _ <- IM.lookup d g return $ IM.foldrWithKey toIn [] pp where toIn s lbl acc = (I.E (-1) s d, lbl) : acc instance I.InductiveGraph (PatriciaTree nl el) where emptyGraph = Gr IM.empty insertLabeledVertex gr@(Gr g) lab = let vid = I.maxVertexId gr + 1 v = I.V vid g' = IM.insert vid (Ctx mempty v lab mempty) g in (v, Gr g') insertLabeledEdge gr@(Gr g) v1@(I.V src) v2@(I.V dst) lab = do guard (IM.member src g && IM.member dst g) guard (not (I.edgeExists gr v1 v2)) let e = I.E (-1) src dst Ctx spp sv sl sss <- IM.lookup src g Ctx dpp dv dl dss <- IM.lookup dst g let sctx' = Ctx spp sv sl (IM.insert dst lab sss) dctx' = Ctx (IM.insert src lab dpp) dv dl dss !g' = IM.insert src sctx' g !g'' = IM.insert dst dctx' g' return (e, Gr g'') deleteEdge g (I.E _ s d) = I.deleteEdgesBetween g (I.V s) (I.V d) deleteEdgesBetween gr@(Gr g) (I.V src) (I.V dst) = fromMaybe gr $ do Ctx spp sv sl sss <- IM.lookup src g Ctx dpp dv dl dss <- IM.lookup dst g let sctx' = Ctx spp sv sl (IM.delete dst sss) dctx' = Ctx (IM.delete src dpp) dv dl dss !g' = IM.insert src sctx' g !g'' = IM.insert dst dctx' g' return (Gr g'') context (Gr g) (I.V v) = do Ctx pp _ l ss <- IM.lookup v g return $ I.Context (toAdj pp) l (toAdj ss) match (Gr g) (I.V v) = do Ctx pp _ l ss <- IM.lookup v g let g' = foldr (IM.adjust (removeSucc v)) g (IM.keys pp) g'' = foldr (IM.adjust (removePred v)) g' (IM.keys ss) g''' = IM.delete v g'' return $ (I.Context (toAdj pp) l (toAdj ss), Gr g''') toAdj :: IntMap a -> [(a, I.Vertex)] toAdj = IM.foldrWithKey f [] where f dst lbl acc = (lbl, I.V dst) : acc removeSucc :: Int -> Ctx nl el -> Ctx nl el removeSucc v (Ctx pp vert lbl ss) = Ctx pp vert lbl (IM.delete v ss) removePred :: Int -> Ctx nl el -> Ctx nl el removePred v (Ctx pp vert lbl ss) = Ctx (IM.delete v pp) vert lbl ss {- Note [Representation] Since this graph does not support parallel edges, the edge ID does not actually matter. This implementation will let it always be zero. Edge identity can be recovered with just (src, dst). -}