{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE RecordWildCards #-} module Haddock.Interface.Specialize ( specializeInstHead ) where import Haddock.Syb import Haddock.Types import GHC import Name import FastString import Control.Monad import Control.Monad.Trans.Reader import Control.Monad.Trans.State import Data.Data import qualified Data.List as List import Data.Maybe import Data.Map (Map) import qualified Data.Map as Map import Data.Set (Set) import qualified Data.Set as Set -- | Instantiate all occurrences of given names with corresponding types. specialize :: forall name a. (Ord name, DataId name, NamedThing name) => Data a => [(name, HsType name)] -> a -> a specialize specs = go where go :: forall x. Data x => x -> x go = everywhereButType @name $ mkT $ sugar . specialize_ty_var specialize_ty_var (HsTyVar _ (L _ name')) | Just t <- Map.lookup name' spec_map = t specialize_ty_var typ = typ -- This is a tricky recursive definition that is guaranteed to terminate -- because a type binder cannot be instantiated with a type that depends -- on that binder. i.e. @a -> Maybe a@ is invalid spec_map = Map.fromList [ (n, go t) | (n, t) <- specs] -- | Instantiate given binders with corresponding types. -- -- Again, it is just a convenience function around 'specialize'. Note that -- length of type list should be the same as the number of binders. specializeTyVarBndrs :: (Ord name, DataId name, NamedThing name) => Data a => LHsQTyVars name -> [HsType name] -> a -> a specializeTyVarBndrs bndrs typs = specialize $ zip bndrs' typs where bndrs' = map (bname . unLoc) . hsq_explicit $ bndrs bname (UserTyVar (L _ name)) = name bname (KindedTyVar (L _ name) _) = name specializePseudoFamilyDecl :: (Ord name, DataId name, NamedThing name) => LHsQTyVars name -> [HsType name] -> PseudoFamilyDecl name -> PseudoFamilyDecl name specializePseudoFamilyDecl bndrs typs decl = decl {pfdTyVars = map (specializeTyVarBndrs bndrs typs) (pfdTyVars decl)} specializeSig :: forall name . (Ord name, DataId name, SetName name, NamedThing name) => LHsQTyVars name -> [HsType name] -> Sig name -> Sig name specializeSig bndrs typs (TypeSig lnames typ) = TypeSig lnames (typ {hswc_body = (hswc_body typ) {hsib_body = noLoc typ'}}) where true_type :: HsType name true_type = unLoc (hsSigWcType typ) typ' :: HsType name typ' = rename fv $ specializeTyVarBndrs bndrs typs true_type fv = foldr Set.union Set.empty . map freeVariables $ typs specializeSig _ _ sig = sig -- | Make all details of instance head (signatures, associated types) -- specialized to that particular instance type. specializeInstHead :: (Ord name, DataId name, SetName name, NamedThing name) => InstHead name -> InstHead name specializeInstHead ihd@InstHead { ihdInstType = clsi@ClassInst { .. }, .. } = ihd { ihdInstType = instType' } where instType' = clsi { clsiSigs = map specializeSig' clsiSigs , clsiAssocTys = map specializeFamilyDecl' clsiAssocTys } specializeSig' = specializeSig clsiTyVars ihdTypes specializeFamilyDecl' = specializePseudoFamilyDecl clsiTyVars ihdTypes specializeInstHead ihd = ihd -- | Make given type use tuple and list literals where appropriate. -- -- After applying 'specialize' function some terms may not use idiomatic list -- and tuple literals resulting in types like @[] a@ or @(,,) a b c@. This -- can be fixed using 'sugar' function, that will turn such types into @[a]@ -- and @(a, b, c)@. sugar :: forall name. (NamedThing name, DataId name) => HsType name -> HsType name sugar = sugarOperators . sugarTuples . sugarLists sugarLists :: NamedThing name => HsType name -> HsType name sugarLists (HsAppTy (L _ (HsTyVar _ (L _ name))) ltyp) | isBuiltInSyntax name' && strName == "[]" = HsListTy ltyp where name' = getName name strName = occNameString . nameOccName $ name' sugarLists typ = typ sugarTuples :: NamedThing name => HsType name -> HsType name sugarTuples typ = aux [] typ where aux apps (HsAppTy (L _ ftyp) atyp) = aux (atyp:apps) ftyp aux apps (HsParTy (L _ typ')) = aux apps typ' aux apps (HsTyVar _ (L _ name)) | isBuiltInSyntax name' && suitable = HsTupleTy HsBoxedTuple apps where name' = getName name strName = occNameString . nameOccName $ name' suitable = case parseTupleArity strName of Just arity -> arity == length apps Nothing -> False aux _ _ = typ sugarOperators :: NamedThing name => HsType name -> HsType name sugarOperators (HsAppTy (L _ (HsAppTy (L _ (HsTyVar _ (L l name))) la)) lb) | isSymOcc $ getOccName name' = mkHsOpTy la (L l name) lb | isBuiltInSyntax name' && getOccString name == "(->)" = HsFunTy la lb where name' = getName name sugarOperators typ = typ -- | Compute arity of given tuple operator. -- -- >>> parseTupleArity "(,,)" -- Just 3 -- -- >>> parseTupleArity "(,,,,)" -- Just 5 -- -- >>> parseTupleArity "abc" -- Nothing -- -- >>> parseTupleArity "()" -- Nothing parseTupleArity :: String -> Maybe Int parseTupleArity ('(':commas) = do n <- parseCommas commas guard $ n /= 0 return $ n + 1 where parseCommas (',':rest) = (+ 1) <$> parseCommas rest parseCommas ")" = Just 0 parseCommas _ = Nothing parseTupleArity _ = Nothing -- | Haskell AST type representation. -- -- This type is used for renaming (more below), essentially the ambiguous (!) -- version of 'Name'. So, why is this 'FastString' instead of 'OccName'? Well, -- it was 'OccName' before, but turned out that 'OccName' sometimes also -- contains namespace information, differentiating visually same types. -- -- And 'FastString' is used because it is /visual/ part of 'OccName' - it is -- not converted to 'String' or alike to avoid new allocations. Additionally, -- since it is stored mostly in 'Set', fast comparison of 'FastString' is also -- quite nice. type NameRep = FastString getNameRep :: NamedThing name => name -> NameRep getNameRep = occNameFS . getOccName nameRepString :: NameRep -> String nameRepString = unpackFS stringNameRep :: String -> NameRep stringNameRep = mkFastString setInternalNameRep :: SetName name => NameRep -> name -> name setInternalNameRep = setInternalOccName . mkVarOccFS setInternalOccName :: SetName name => OccName -> name -> name setInternalOccName occ name = setName nname' name where nname = getName name nname' = mkInternalName (nameUnique nname) occ (nameSrcSpan nname) -- | Compute set of free variables of given type. freeVariables :: forall name. (NamedThing name, DataId name) => HsType name -> Set NameRep freeVariables = everythingWithState Set.empty Set.union query where query term ctx = case cast term :: Maybe (HsType name) of Just (HsForAllTy bndrs _) -> (Set.empty, Set.union ctx (bndrsNames bndrs)) Just (HsTyVar _ (L _ name)) | getName name `Set.member` ctx -> (Set.empty, ctx) | otherwise -> (Set.singleton $ getNameRep name, ctx) _ -> (Set.empty, ctx) bndrsNames = Set.fromList . map (getName . tyVarName . unLoc) -- | Make given type visually unambiguous. -- -- After applying 'specialize' method, some free type variables may become -- visually ambiguous - for example, having @a -> b@ and specializing @a@ to -- @(a -> b)@ we get @(a -> b) -> b@ where first occurrence of @b@ refers to -- different type variable than latter one. Applying 'rename' function -- will fix that type to be visually unambiguous again (making it something -- like @(a -> c) -> b@). rename :: SetName name => Set NameRep -> HsType name -> HsType name rename fv typ = runReader (renameType typ) $ RenameEnv { rneFV = fv , rneCtx = Map.empty } -- | Renaming monad. type Rename name = Reader (RenameEnv name) -- | Binding generation monad. type Rebind name = State (RenameEnv name) data RenameEnv name = RenameEnv { rneFV :: Set NameRep , rneCtx :: Map Name name } renameType :: SetName name => HsType name -> Rename name (HsType name) renameType (HsForAllTy bndrs lt) = rebind bndrs $ \bndrs' -> HsForAllTy <$> pure bndrs' <*> renameLType lt renameType (HsQualTy lctxt lt) = HsQualTy <$> located renameContext lctxt <*> renameLType lt renameType (HsTyVar ip name) = HsTyVar ip <$> located renameName name renameType (HsAppTy lf la) = HsAppTy <$> renameLType lf <*> renameLType la renameType (HsFunTy la lr) = HsFunTy <$> renameLType la <*> renameLType lr renameType (HsListTy lt) = HsListTy <$> renameLType lt renameType (HsPArrTy lt) = HsPArrTy <$> renameLType lt renameType (HsTupleTy srt lt) = HsTupleTy srt <$> mapM renameLType lt renameType (HsSumTy lt) = HsSumTy <$> mapM renameLType lt renameType (HsOpTy la lop lb) = HsOpTy <$> renameLType la <*> located renameName lop <*> renameLType lb renameType (HsParTy lt) = HsParTy <$> renameLType lt renameType (HsIParamTy ip lt) = HsIParamTy ip <$> renameLType lt renameType (HsEqTy la lb) = HsEqTy <$> renameLType la <*> renameLType lb renameType (HsKindSig lt lk) = HsKindSig <$> renameLType lt <*> pure lk renameType t@(HsSpliceTy _ _) = pure t renameType (HsDocTy lt doc) = HsDocTy <$> renameLType lt <*> pure doc renameType (HsBangTy bang lt) = HsBangTy bang <$> renameLType lt renameType t@(HsRecTy _) = pure t renameType t@(HsCoreTy _) = pure t renameType (HsExplicitListTy ip ph ltys) = HsExplicitListTy ip ph <$> renameLTypes ltys renameType (HsExplicitTupleTy phs ltys) = HsExplicitTupleTy phs <$> renameLTypes ltys renameType t@(HsTyLit _) = pure t renameType (HsWildCardTy wc) = pure (HsWildCardTy wc) renameType (HsAppsTy _) = error "HsAppsTy: Only used before renaming" renameLType :: SetName name => LHsType name -> Rename name (LHsType name) renameLType = located renameType renameLTypes :: SetName name => [LHsType name] -> Rename name [LHsType name] renameLTypes = mapM renameLType renameContext :: SetName name => HsContext name -> Rename name (HsContext name) renameContext = renameLTypes {- renameLTyOp :: SetName name => LHsTyOp name -> Rename name (LHsTyOp name) renameLTyOp (wrap, lname) = (,) wrap <$> located renameName lname -} renameName :: SetName name => name -> Rename name name renameName name = do RenameEnv { rneCtx = ctx } <- ask pure $ fromMaybe name (Map.lookup (getName name) ctx) rebind :: SetName name => [LHsTyVarBndr name] -> ([LHsTyVarBndr name] -> Rename name a) -> Rename name a rebind lbndrs action = do (lbndrs', env') <- runState (rebindLTyVarBndrs lbndrs) <$> ask local (const env') (action lbndrs') rebindLTyVarBndrs :: SetName name => [LHsTyVarBndr name] -> Rebind name [LHsTyVarBndr name] rebindLTyVarBndrs lbndrs = mapM (located rebindTyVarBndr) lbndrs rebindTyVarBndr :: SetName name => HsTyVarBndr name -> Rebind name (HsTyVarBndr name) rebindTyVarBndr (UserTyVar (L l name)) = UserTyVar . L l <$> rebindName name rebindTyVarBndr (KindedTyVar name kinds) = KindedTyVar <$> located rebindName name <*> pure kinds rebindName :: SetName name => name -> Rebind name name rebindName name = do RenameEnv { .. } <- get taken <- takenNames case Map.lookup (getName name) rneCtx of Just name' -> pure name' Nothing | getNameRep name `Set.member` taken -> freshName name Nothing -> reuseName name -- | Generate fresh occurrence name, put it into context and return. freshName :: SetName name => name -> Rebind name name freshName name = do env@RenameEnv { .. } <- get taken <- takenNames let name' = setInternalNameRep (findFreshName taken rep) name put $ env { rneCtx = Map.insert nname name' rneCtx } return name' where nname = getName name rep = getNameRep nname reuseName :: SetName name => name -> Rebind name name reuseName name = do env@RenameEnv { .. } <- get put $ env { rneCtx = Map.insert (getName name) name rneCtx } return name takenNames :: NamedThing name => Rebind name (Set NameRep) takenNames = do RenameEnv { .. } <- get return $ Set.union rneFV (ctxElems rneCtx) where ctxElems = Set.fromList . map getNameRep . Map.elems findFreshName :: Set NameRep -> NameRep -> NameRep findFreshName taken = fromJust . List.find isFresh . alternativeNames where isFresh = not . flip Set.member taken alternativeNames :: NameRep -> [NameRep] alternativeNames name | [_] <- nameRepString name = letterNames ++ alternativeNames' name where letterNames = map (stringNameRep . pure) ['a'..'z'] alternativeNames name = alternativeNames' name alternativeNames' :: NameRep -> [NameRep] alternativeNames' name = [ stringNameRep $ str ++ show i | i :: Int <- [0..] ] where str = nameRepString name located :: Functor f => (a -> f b) -> Located a -> f (Located b) located f (L loc e) = L loc <$> f e tyVarName :: HsTyVarBndr name -> name tyVarName (UserTyVar name) = unLoc name tyVarName (KindedTyVar (L _ name) _) = name