----------------------------------------------------------------------------- -- | -- Module : Math.Geometry.Grid -- Copyright : (c) Amy de Buitléir 2012-2019 -- License : BSD-style -- Maintainer : amy@nualeargais.ie -- Stability : experimental -- Portability : portable -- -- A regular arrangement of tiles. Grids have a variety of uses, -- including games and self-organising maps. -- The userguide is available at -- <https://github.com/mhwombat/grid/wiki>. -- -- In this package, tiles are called \"triangular\", \"square\", etc., -- based on the number of /neighbours/ they have. -- For example, a square tile has four neighbours, and a hexagonal -- tile has six. -- There are only three regular polygons that can tile a plane: -- triangles, squares, and hexagons. -- Of course, other plane tilings are possible if you use irregular -- polygons, or curved shapes, or if you combine tiles of different -- shapes. -- -- When you tile other surfaces, things get very interesting. -- Octagons will tile a /hyperbolic/ plane. -- (Alternatively, you can think of these as squares on a board game -- where diagonal moves are allowed.) -- -- For a board game, you probably want to choose the grid type based -- on the number of /directions/ a player can move, rather than the -- number of sides the tile will have when you display it. -- For example, for a game that uses square tiles and allows the user -- to move diagonally as well as horizontally and vertically, -- consider using one of the grids with /octagonal/ tiles to model the -- board. -- You can still /display/ the tiles as squares, but for internal -- calculations they are octagons. -- -- NOTE: Version 6.0 moved the various grid flavours to sub-modules. -- -- NOTE: Version 4.0 uses associated (type) synonyms instead of -- multi-parameter type classes. -- -- NOTE: Version 3.0 changed the order of parameters for many functions. -- This makes it easier for the user to write mapping and folding -- operations. -- ----------------------------------------------------------------------------- {-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances, FlexibleInstances #-} module Math.Geometry.Grid ( -- * Example -- $Example -- * Grids Grid(indices, distance, minDistance, neighbours, neighbour, contains, tileCount, null, nonNull, edges, viewpoint, isAdjacent, adjacentTilesToward, minimalPaths, directionTo), Index, Direction, -- * Finite grids FiniteGrid(..), -- * Bounded grids BoundedGrid(..) ) where import Math.Geometry.GridInternal (Grid(..), FiniteGrid(..), BoundedGrid(..)) {- $Example Create a grid. >ghci> let g = hexHexGrid 3 >ghci> indices g >[(-2,0),(-2,1),(-2,2),(-1,-1),(-1,0),(-1,1),(-1,2),(0,-2),(0,-1),(0,0),(0,1),(0,2),(1,-2),(1,-1),(1,0),(1,1),(2,-2),(2,-1),(2,0)] Find out if the specified index is contained within the grid. >ghci> g `contains` (0,-2) >True >ghci> g `contains` (99,99) >False Find out the minimum number of moves to go from one tile in a grid to another tile, moving between adjacent tiles at each step. >ghci> distance g (0,-2) (0,2) >4 Find out the minimum number of moves to go from one tile in a grid to any other tile, moving between adjacent tiles at each step. >ghci> viewpoint g (1,-2) >[((-2,0),3),((-2,1),3),((-2,2),4),((-1,-1),2),((-1,0),2),((-1,1),3),((-1,2),4),((0,-2),1),((0,-1),1),((0,0),2),((0,1),3),((0,2),4),((1,-2),0),((1,-1),1),((1,0),2),((1,1),3),((2,-2),1),((2,-1),2),((2,0),3)] Find out which tiles are adjacent to a particular tile. >ghci> neighbours g (-1,1) >[(-2,1),(-2,2),(-1,2),(0,1),(0,0),(-1,0)] Find how many tiles are adjacent to a particular tile. (Note that the result is consistent with the result from the previous step.) >ghci> numNeighbours g (-1,1) >6 Find out if an index is valid for the grid. >ghci> g `contains` (0,0) >True >ghci> g `contains` (0,12) >False Find out the physical dimensions of the grid. >ghci> size g >3 Get the list of boundary tiles for a grid. >ghci> boundary g >[(-2,2),(-1,2),(0,2),(1,1),(2,0),(2,-1),(2,-2),(1,-2),(0,-2),(-1,-1),(-2,0),(-2,1)] Find out the number of tiles in the grid. >ghci> tileCount g >19 Check if a grid is null (contains no tiles). >ghci> null g >False >ghci> nonNull g >True Find the central tile(s) (the tile(s) furthest from the boundary). >ghci> centre g >[(0,0)] Find all of the minimal paths between two points. >ghci> let g = hexHexGrid 3 >ghci> minimalPaths g (0,0) (2,-1) >[[(0,0),(1,0),(2,-1)],[(0,0),(1,-1),(2,-1)]] Find all of the pairs of tiles that are adjacent. >ghci> edges g >[((-2,0),(-2,1)),((-2,0),(-1,0)),((-2,0),(-1,-1)),((-2,1),(-2,2)),((-2,1),(-1,1)),((-2,1),(-1,0)),((-2,2),(-1,2)),((-2,2),(-1,1)),((-1,-1),(-1,0)),((-1,-1),(0,-1)),((-1,-1),(0,-2)),((-1,0),(-1,1)),((-1,0),(0,0)),((-1,0),(0,-1)),((-1,1),(-1,2)),((-1,1),(0,1)),((-1,1),(0,0)),((-1,2),(0,2)),((-1,2),(0,1)),((0,-2),(0,-1)),((0,-2),(1,-2)),((0,-1),(0,0)),((0,-1),(1,-1)),((0,-1),(1,-2)),((0,0),(0,1)),((0,0),(1,0)),((0,0),(1,-1)),((0,1),(0,2)),((0,1),(1,1)),((0,1),(1,0)),((0,2),(1,1)),((1,-2),(1,-1)),((1,-2),(2,-2)),((1,-1),(1,0)),((1,-1),(2,-1)),((1,-1),(2,-2)),((1,0),(1,1)),((1,0),(2,0)),((1,0),(2,-1)),((1,1),(2,0)),((2,-2),(2,-1)),((2,-1),(2,0))] Find out if two tiles are adjacent. >ghci> isAdjacent g (-2,0) (-2,1) >True >ghci> isAdjacent g (-2,0) (0,1) >False -}