{-# LANGUAGE CPP, FlexibleInstances, MultiParamTypeClasses #-} {- | Module : Data.GraphViz.Types.Graph Description : A graph-like representation of Dot graphs. Copyright : (c) Ivan Lazar Miljenovic License : 3-Clause BSD-style Maintainer : Ivan.Miljenovic@gmail.com It is sometimes useful to be able to manipulate a Dot graph /as/ an actual graph. This representation lets you do so, using an inductive approach based upon that from FGL (note that 'DotGraph' is /not/ an instance of the FGL classes due to having the wrong kind). Note, however, that the API is not as complete as proper graph implementations. For purposes of manipulation, all edges are found in the root graph and not in a cluster; as such, having 'EdgeAttrs' in a cluster's 'GlobalAttributes' is redundant. Printing is achieved via "Data.GraphViz.Types.Canonical" (using 'toCanonical') and parsing via "Data.GraphViz.Types.Generalised" (so /any/ piece of Dot code can be parsed in). This representation doesn't allow non-cluster sub-graphs. Also, all clusters /must/ have a unique identifier. For those functions (with the exception of 'DotRepr' methods) that take or return a \"@Maybe GraphID@\", a value of \"@Nothing@\" refers to the root graph; \"@Just clust@\" refers to the cluster with the identifier \"@clust@\". You would not typically explicitly create these values, instead converting existing Dot graphs (via 'fromDotRepr'). However, one way of constructing the sample graph would be: > setID (Str "G") > . setStrictness False > . setIsDirected True > . setClusterAttributes (Int 0) [GraphAttrs [style filled, color LightGray, textLabel "process #1"], NodeAttrs [style filled, color White]] > . setClusterAttributes (Int 1) [GraphAttrs [textLabel "process #2", color Blue], NodeAttrs [style filled]] > $ composeList [ Cntxt "a0" (Just $ Int 0) [] [("a3",[]),("start",[])] [("a1",[])] > , Cntxt "a1" (Just $ Int 0) [] [] [("a2",[]),("b3",[])] > , Cntxt "a2" (Just $ Int 0) [] [] [("a3",[])] > , Cntxt "a3" (Just $ Int 0) [] [("b2",[])] [("end",[])] > , Cntxt "b0" (Just $ Int 1) [] [("start",[])] [("b1",[])] > , Cntxt "b1" (Just $ Int 1) [] [] [("b2",[])] > , Cntxt "b2" (Just $ Int 1) [] [] [("b3",[])] > , Cntxt "b3" (Just $ Int 1) [] [] [("end",[])] > , Cntxt "end" Nothing [shape MSquare] [] [] > , Cntxt "start" Nothing [shape MDiamond] [] []] -} module Data.GraphViz.Types.Graph ( DotGraph , GraphID(..) , Context(..) -- * Conversions , toCanonical , unsafeFromCanonical , fromDotRepr -- * Graph information , isEmpty , hasClusters , isEmptyGraph , graphAttributes , parentOf , clusterAttributes , foundInCluster , attributesOf , predecessorsOf , successorsOf , adjacentTo , adjacent -- * Graph construction , mkGraph , emptyGraph , (&) , composeList , addNode , DotNode(..) , addDotNode , addEdge , DotEdge(..) , addDotEdge , addCluster , setClusterParent , setClusterAttributes -- * Graph deconstruction , decompose , decomposeAny , decomposeList , deleteNode , deleteAllEdges , deleteEdge , deleteDotEdge , deleteCluster , removeEmptyClusters ) where import Data.GraphViz.Algorithms (CanonicaliseOptions(..), canonicaliseOptions) import Data.GraphViz.Algorithms.Clustering import Data.GraphViz.Attributes.Complete (Attributes) import Data.GraphViz.Attributes.Same import Data.GraphViz.Internal.Util (groupSortBy, groupSortCollectBy) import Data.GraphViz.Types import qualified Data.GraphViz.Types.Canonical as C import qualified Data.GraphViz.Types.Generalised as G import Data.GraphViz.Types.Internal.Common (partitionGlobal) import qualified Data.GraphViz.Types.State as St import Control.Applicative (liftA2, (<|>)) import Control.Arrow ((***)) import qualified Data.Foldable as F import Data.List (delete, foldl', unfoldr) import Data.Map (Map) import qualified Data.Map as M import Data.Maybe (fromMaybe, mapMaybe, maybeToList) import qualified Data.Sequence as Seq import qualified Data.Set as S import Text.ParserCombinators.ReadPrec (prec) import Text.Read (Lexeme(Ident), lexP, parens, readPrec) #if !(MIN_VERSION_base (4,8,0)) import Control.Applicative ((<$>), (<*>)) #endif -- ----------------------------------------------------------------------------- -- | A Dot graph that allows graph operations on it. data DotGraph n = DG { strictGraph :: !Bool , directedGraph :: !Bool , graphAttrs :: !GlobAttrs , graphID :: !(Maybe GraphID) , clusters :: !(Map GraphID ClusterInfo) , values :: !(NodeMap n) } deriving (Eq, Ord) -- | It should be safe to substitute 'unsafeFromCanonical' for -- 'fromCanonical' in the output of this. instance (Show n) => Show (DotGraph n) where showsPrec d dg = showParen (d > 10) $ showString "fromCanonical " . shows (toCanonical dg) -- | If the graph is the output from 'show', then it should be safe to -- substitute 'unsafeFromCanonical' for 'fromCanonical'. instance (Ord n, Read n) => Read (DotGraph n) where readPrec = parens . prec 10 $ do Ident "fromCanonical" <- lexP cdg <- readPrec return $ fromCanonical cdg data GlobAttrs = GA { graphAs :: !SAttrs , nodeAs :: !SAttrs , edgeAs :: !SAttrs } deriving (Eq, Ord, Show, Read) data NodeInfo n = NI { _inCluster :: !(Maybe GraphID) , _attributes :: !Attributes , _predecessors :: !(EdgeMap n) , _successors :: !(EdgeMap n) } deriving (Eq, Ord, Show, Read) data ClusterInfo = CI { parentCluster :: !(Maybe GraphID) , clusterAttrs :: !GlobAttrs } deriving (Eq, Ord, Show, Read) type NodeMap n = Map n (NodeInfo n) type EdgeMap n = Map n [Attributes] -- | The decomposition of a node from a dot graph. Any loops should -- be found in 'successors' rather than 'predecessors'. Note also -- that these are created\/consumed as if for /directed/ graphs. data Context n = Cntxt { node :: !n -- | The cluster this node can be found in; -- @Nothing@ indicates the node can be -- found in the root graph. , inCluster :: !(Maybe GraphID) , attributes :: !Attributes , predecessors :: ![(n, Attributes)] , successors :: ![(n, Attributes)] } deriving (Eq, Ord, Show, Read) adjacent :: Context n -> [DotEdge n] adjacent c = mapU (`DotEdge` n) (predecessors c) ++ mapU (DotEdge n) (successors c) where n = node c mapU = map . uncurry emptyGraph :: DotGraph n emptyGraph = DG { strictGraph = False , directedGraph = True , graphID = Nothing , graphAttrs = emptyGA , clusters = M.empty , values = M.empty } emptyGA :: GlobAttrs emptyGA = GA S.empty S.empty S.empty -- ----------------------------------------------------------------------------- -- Construction -- | Merge the 'Context' into the graph. Assumes that the specified -- node is not in the graph but that all endpoints in the -- 'successors' and 'predecessors' (with the exception of loops) -- are. If the cluster is not present in the graph, then it will be -- added with no attributes with a parent of the root graph. -- -- Note that @&@ and @'decompose'@ are /not/ quite inverses, as this -- function will add in the cluster if it does not yet exist in the -- graph, but 'decompose' will not delete it. (&) :: (Ord n) => Context n -> DotGraph n -> DotGraph n (Cntxt n mc as ps ss) & dg = withValues merge dg' where ps' = toMap ps ps'' = fromMap (M.delete n ps') ss' = toMap ss ss'' = fromMap (M.delete n ss') dg' = addNode n mc as dg merge = addSuccRev n ps'' . addPredRev n ss'' -- Add reverse edges . M.adjust (\ni -> ni { _predecessors = ps', _successors = ss' }) n -- Add actual edges infixr 5 & -- | Recursively merge the list of contexts. -- -- > composeList = foldr (&) emptyGraph composeList :: (Ord n) => [Context n] -> DotGraph n composeList = foldr (&) emptyGraph addSuccRev :: (Ord n) => n -> [(n, Attributes)] -> NodeMap n -> NodeMap n addSuccRev = addEdgeLinks niSkip niSucc addPredRev :: (Ord n) => n -> [(n, Attributes)] -> NodeMap n -> NodeMap n addPredRev = addEdgeLinks niSkip niPred addEdgeLinks :: (Ord n) => UpdateEdgeMap n -> UpdateEdgeMap n -> n -> [(n, Attributes)] -> NodeMap n -> NodeMap n addEdgeLinks fwd rev f tas = updRev . updFwd where updFwd = M.adjust addFwd f addFwd ni = foldl' (\ni' (t,as) -> fwd (M.insertWith (++) t [as]) ni') ni tas updRev nm = foldl' (\nm' (t,as) -> M.adjust (addRev as) t nm') nm tas addRev as = rev (M.insertWith (++) f [as]) -- | Add a node to the current graph. Merges attributes and edges if -- the node already exists in the graph. -- -- If the specified cluster does not yet exist in the graph, then it -- will be added (as a sub-graph of the overall graph and no -- attributes). addNode :: (Ord n) => n -> Maybe GraphID -- ^ The cluster the node can be found in -- (@Nothing@ refers to the root graph). -> Attributes -> DotGraph n -> DotGraph n addNode n mc as dg = addEmptyCluster mc $ dg { values = ns' } where ns = values dg ns' = M.insertWith mergeLogic n (NI mc as M.empty M.empty) ns mergeLogic (NI newClust newAttrs newPreds newSuccs) (NI oldClust oldAttrs oldPreds oldSuccs) = NI resClust resAttrs resPreds resSuccs where resClust = newClust <|> oldClust resAttrs = unSame $ S.union (toSAttr newAttrs) (toSAttr oldAttrs) resPreds = M.unionWith (++) newPreds oldPreds resSuccs = M.unionWith (++) newSuccs oldSuccs -- | A variant of 'addNode' that takes in a DotNode (not in a -- cluster). addDotNode :: (Ord n) => DotNode n -> DotGraph n -> DotGraph n addDotNode (DotNode n as) = addNode n Nothing as -- | Add the specified edge to the graph; assumes both node values are -- already present in the graph. If the graph is undirected then -- the order of nodes doesn't matter. addEdge :: (Ord n) => n -> n -> Attributes -> DotGraph n -> DotGraph n addEdge f t as = withValues merge where merge = addEdgeLinks niSucc niPred f [(t,as)] -- | A variant of 'addEdge' that takes a 'DotEdge' value. addDotEdge :: (Ord n) => DotEdge n -> DotGraph n -> DotGraph n addDotEdge (DotEdge f t as) = addEdge f t as -- | Add a new cluster to the graph; throws an error if the cluster -- already exists. Assumes that it doesn't match the identifier of -- the overall graph. If the parent cluster doesn't already exist -- in the graph then it will be added. addCluster :: GraphID -- ^ The identifier for this cluster. -> Maybe GraphID -- ^ The parent of this cluster -- (@Nothing@ refers to the root -- graph) -> [GlobalAttributes] -> DotGraph n -> DotGraph n addCluster c mp gas dg | c `M.member` cs = error "Cluster already exists in the graph" | otherwise = addEmptyCluster mp $ dg { clusters = M.insert c ci cs } where cs = clusters dg ci = CI mp $ toGlobAttrs gas -- Used to make sure that the parent cluster exists addEmptyCluster :: Maybe GraphID -> DotGraph n -> DotGraph n addEmptyCluster = maybe id (withClusters . (`dontReplace` defCI)) where dontReplace = M.insertWith (const id) defCI = CI Nothing emptyGA -- | Specify the parent of the cluster; adds both in if not already present. setClusterParent :: GraphID -> Maybe GraphID -> DotGraph n -> DotGraph n setClusterParent c p = withClusters (M.adjust setP c) . addCs where addCs = addEmptyCluster p . addEmptyCluster (Just c) setP ci = ci { parentCluster = p } -- | Specify the attributes of the cluster; adds it if not already -- present. setClusterAttributes :: GraphID -> [GlobalAttributes] -> DotGraph n -> DotGraph n setClusterAttributes c gas = withClusters (M.adjust setAs c) . addEmptyCluster (Just c) where setAs ci = ci { clusterAttrs = toGlobAttrs gas } -- | Create a graph with no clusters. mkGraph :: (Ord n) => [DotNode n] -> [DotEdge n] -> DotGraph n mkGraph ns es = flip (foldl' $ flip addDotEdge) es $ foldl' (flip addDotNode) emptyGraph ns -- | Convert this DotGraph into canonical form. All edges are found -- in the outer graph rather than in clusters. toCanonical :: DotGraph n -> C.DotGraph n toCanonical dg = C.DotGraph { C.strictGraph = strictGraph dg , C.directedGraph = directedGraph dg , C.graphID = graphID dg , C.graphStatements = stmts } where stmts = C.DotStmts { C.attrStmts = fromGlobAttrs $ graphAttrs dg , C.subGraphs = cs , C.nodeStmts = ns , C.edgeStmts = getEdgeInfo False dg } cls = clusters dg pM = clusterPath' dg clustAs = maybe [] (fromGlobAttrs . clusterAttrs) . (`M.lookup`cls) lns = map (\ (n,ni) -> (n,(_inCluster ni, _attributes ni))) . M.assocs $ values dg (cs,ns) = clustersToNodes pathOf (const True) id clustAs snd lns pathOf (n,(c,as)) = pathFrom c (n,as) pathFrom c ln = F.foldr C (N ln) . fromMaybe Seq.empty $ (`M.lookup`pM) =<< c -- ----------------------------------------------------------------------------- -- Deconstruction -- | A partial inverse of @'&'@, in that if a node exists in a graph -- then it will be decomposed, but will not remove the cluster that -- it was in even if it was the only node in that cluster. decompose :: (Ord n) => n -> DotGraph n -> Maybe (Context n, DotGraph n) decompose n dg | n `M.notMember` ns = Nothing | otherwise = Just (c, dg') where ns = values dg (Just (NI mc as ps ss), ns') = M.updateLookupWithKey (const . const Nothing) n ns c = Cntxt n mc as (fromMap $ n `M.delete` ps) (fromMap ss) dg' = dg { values = delSucc n ps . delPred n ss $ ns' } -- | As with 'decompose', but do not specify /which/ node to -- decompose. decomposeAny :: (Ord n) => DotGraph n -> Maybe (Context n, DotGraph n) decomposeAny dg | isEmpty dg = Nothing | otherwise = decompose (fst . M.findMin $ values dg) dg -- | Recursively decompose the Dot graph into a list of contexts such -- that if @(c:cs) = decomposeList dg@, then @dg = c & 'composeList' cs@. -- -- Note that all global attributes are lost, so this is /not/ -- suitable for representing a Dot graph on its own. decomposeList :: (Ord n) => DotGraph n -> [Context n] decomposeList = unfoldr decomposeAny delSucc :: (Ord n) => n -> EdgeMap n -> NodeMap n -> NodeMap n delSucc = delPS niSucc delPred :: (Ord n) => n -> EdgeMap n -> NodeMap n -> NodeMap n delPred = delPS niPred -- Only takes in EdgeMap rather than [n] to make it easier to call -- from decompose delPS :: (Ord n) => ((EdgeMap n -> EdgeMap n) -> NodeInfo n -> NodeInfo n) -> n -> EdgeMap n -> NodeMap n -> NodeMap n delPS fni t fm nm = foldl' delE nm $ M.keys fm where delE nm' f = M.adjust (fni $ M.delete t) f nm' -- | Delete the specified node from the graph; returns the original -- graph if that node isn't present. deleteNode :: (Ord n) => n -> DotGraph n -> DotGraph n deleteNode n dg = maybe dg snd $ decompose n dg -- | Delete all edges between the two nodes; returns the original -- graph if there are no edges. deleteAllEdges :: (Ord n) => n -> n -> DotGraph n -> DotGraph n deleteAllEdges n1 n2 = withValues (delAE n1 n2 . delAE n2 n1) where delAE f t = delSucc f t' . delPred f t' where t' = M.singleton t [] -- | Deletes the specified edge from the DotGraph (note: for unordered -- graphs both orientations are considered). deleteEdge :: (Ord n) => n -> n -> Attributes -> DotGraph n -> DotGraph n deleteEdge n1 n2 as dg = withValues delEs dg where delE f t = M.adjust (niSucc $ M.adjust (delete as) t) f . M.adjust (niPred $ M.adjust (delete as) f) t delEs | directedGraph dg = delE n1 n2 | otherwise = delE n1 n2 . delE n2 n1 -- | As with 'deleteEdge' but takes a 'DotEdge' rather than individual -- values. deleteDotEdge :: (Ord n) => DotEdge n -> DotGraph n -> DotGraph n deleteDotEdge (DotEdge n1 n2 as) = deleteEdge n1 n2 as -- | Delete the specified cluster, and makes any clusters or nodes -- within it be in its root cluster (or the overall graph if -- required). deleteCluster :: GraphID -> DotGraph n -> DotGraph n deleteCluster c dg = withValues (M.map adjNode) . withClusters (M.map adjCluster . M.delete c) $ dg where p = parentCluster =<< c `M.lookup` clusters dg adjParent p' | p' == Just c = p | otherwise = p' adjNode ni = ni { _inCluster = adjParent $ _inCluster ni } adjCluster ci = ci { parentCluster = adjParent $ parentCluster ci } -- | Remove clusters with no sub-clusters and no nodes within them. removeEmptyClusters :: DotGraph n -> DotGraph n removeEmptyClusters dg = dg { clusters = cM' } where cM = clusters dg cM' = (cM `M.difference` invCs) `M.difference` invNs invCs = usedClustsIn $ M.map parentCluster cM invNs = usedClustsIn . M.map _inCluster $ values dg usedClustsIn = M.fromAscList . map ((,) <$> fst . head <*> map snd) . groupSortBy fst . mapMaybe (uncurry (fmap . flip (,))) . M.assocs -- ----------------------------------------------------------------------------- -- Information -- | Does this graph have any nodes? isEmpty :: DotGraph n -> Bool isEmpty = M.null . values -- | Does this graph have any clusters? hasClusters :: DotGraph n -> Bool hasClusters = M.null . clusters -- | Determine if this graph has nodes or clusters. isEmptyGraph :: DotGraph n -> Bool isEmptyGraph = liftA2 (&&) isEmpty (not . hasClusters) graphAttributes :: DotGraph n -> [GlobalAttributes] graphAttributes = fromGlobAttrs . graphAttrs -- | Return the ID for the cluster the node is in. foundInCluster :: (Ord n) => DotGraph n -> n -> Maybe GraphID foundInCluster dg n = _inCluster $ values dg M.! n -- | Return the attributes for the node. attributesOf :: (Ord n) => DotGraph n -> n -> Attributes attributesOf dg n = _attributes $ values dg M.! n -- | Predecessor edges for the specified node. For undirected graphs -- equivalent to 'adjacentTo'. predecessorsOf :: (Ord n) => DotGraph n -> n -> [DotEdge n] predecessorsOf dg t | directedGraph dg = emToDE (`DotEdge` t) . _predecessors $ values dg M.! t | otherwise = adjacentTo dg t -- | Successor edges for the specified node. For undirected graphs -- equivalent to 'adjacentTo'. successorsOf :: (Ord n) => DotGraph n -> n -> [DotEdge n] successorsOf dg f | directedGraph dg = emToDE (DotEdge f) . _successors $ values dg M.! f | otherwise = adjacentTo dg f -- | All edges involving this node. adjacentTo :: (Ord n) => DotGraph n -> n -> [DotEdge n] adjacentTo dg n = sucs ++ preds where ni = values dg M.! n sucs = emToDE (DotEdge n) $ _successors ni preds = emToDE (`DotEdge` n) $ n `M.delete` _predecessors ni emToDE :: (n -> Attributes -> DotEdge n) -> EdgeMap n -> [DotEdge n] emToDE f = map (uncurry f) . fromMap -- | Which cluster (or the root graph) is this cluster in? parentOf :: DotGraph n -> GraphID -> Maybe GraphID parentOf dg c = parentCluster $ clusters dg M.! c clusterAttributes :: DotGraph n -> GraphID -> [GlobalAttributes] clusterAttributes dg c = fromGlobAttrs . clusterAttrs $ clusters dg M.! c -- ----------------------------------------------------------------------------- -- For DotRepr instance instance (Ord n) => DotRepr DotGraph n where fromCanonical = fromDotRepr getID = graphID setID i g = g { graphID = Just i } graphIsDirected = directedGraph setIsDirected d g = g { directedGraph = d } graphIsStrict = strictGraph setStrictness s g = g { strictGraph = s } mapDotGraph = mapNs graphStructureInformation = getGraphInfo nodeInformation = getNodeInfo edgeInformation = getEdgeInfo unAnonymise = id -- No anonymous clusters! instance (Ord n) => G.FromGeneralisedDot DotGraph n where fromGeneralised = fromDotRepr instance (Ord n, PrintDot n) => PrintDotRepr DotGraph n instance (Ord n, ParseDot n) => ParseDotRepr DotGraph n instance (Ord n, PrintDot n, ParseDot n) => PPDotRepr DotGraph n -- | Uses the PrintDot instance for canonical 'C.DotGraph's. instance (PrintDot n) => PrintDot (DotGraph n) where unqtDot = unqtDot . toCanonical -- | Uses the ParseDot instance for generalised 'G.DotGraph's. instance (Ord n, ParseDot n) => ParseDot (DotGraph n) where parseUnqt = fromGDot <$> parseUnqt where -- fromGDot :: G.DotGraph n -> DotGraph n fromGDot = fromDotRepr . (`asTypeOf` (undefined :: G.DotGraph n)) parse = parseUnqt -- Don't want the option of quoting cOptions :: CanonicaliseOptions cOptions = COpts { edgesInClusters = False , groupAttributes = True } -- | Convert any existing DotRepr instance to a 'DotGraph'. fromDotRepr :: (DotRepr dg n) => dg n -> DotGraph n fromDotRepr = unsafeFromCanonical . canonicaliseOptions cOptions . unAnonymise -- | Convert a canonical Dot graph to a graph-based one. This assumes -- that the canonical graph is the same format as returned by -- 'toCanonical'. The \"unsafeness\" is that: -- -- * All clusters must have a unique identifier ('unAnonymise' can -- be used to make sure all clusters /have/ an identifier, but it -- doesn't ensure uniqueness). -- -- * All nodes are assumed to be explicitly listed precisely once. -- -- * Only edges found in the root graph are considered. -- -- If this isn't the case, use 'fromCanonical' instead. -- -- The 'graphToDot' function from "Data.GraphViz" produces output -- suitable for this function (assuming all clusters are provided -- with a unique identifier); 'graphElemsToDot' is suitable if all -- nodes are specified in the input list (rather than just the -- edges). unsafeFromCanonical :: (Ord n) => C.DotGraph n -> DotGraph n unsafeFromCanonical dg = DG { strictGraph = C.strictGraph dg , directedGraph = dirGraph , graphAttrs = as , graphID = mgid , clusters = cs , values = ns } where stmts = C.graphStatements dg mgid = C.graphID dg dirGraph = C.directedGraph dg (as, cs, ns) = fCStmt Nothing stmts fCStmt p stmts' = (sgAs, cs', ns') where sgAs = toGlobAttrs $ C.attrStmts stmts' (cs', sgNs) = (M.unions *** M.unions) . unzip . map (fCSG p) $ C.subGraphs stmts' nNs = M.fromList . map (fDN p) $ C.nodeStmts stmts' ns' = sgNs `M.union` nNs fCSG p sg = (M.insert sgid ci cs', ns') where msgid@(Just sgid) = C.subGraphID sg (as', cs', ns') = fCStmt msgid $ C.subGraphStmts sg ci = CI p as' fDN p (DotNode n as') = ( n , NI { _inCluster = p , _attributes = as' , _predecessors = eSel n tEs , _successors = eSel n fEs } ) es = C.edgeStmts stmts fEs = toEdgeMap fromNode toNode es tEs = delLoops $ toEdgeMap toNode fromNode es eSel n es' = fromMaybe M.empty $ n `M.lookup` es' delLoops = M.mapWithKey M.delete toEdgeMap :: (Ord n) => (DotEdge n -> n) -> (DotEdge n -> n) -> [DotEdge n] -> Map n (EdgeMap n) toEdgeMap f t = M.map eM . M.fromList . groupSortCollectBy f t' where t' = liftA2 (,) t edgeAttributes eM = M.fromList . groupSortCollectBy fst snd mapNs :: (Ord n') => (n -> n') -> DotGraph n -> DotGraph n' mapNs f (DG st d as mid cs vs) = DG st d as mid cs $ mapNM vs where mapNM = M.map mapNI . mpM mapNI (NI mc as' ps ss) = NI mc as' (mpM ps) (mpM ss) mpM = M.mapKeys f getGraphInfo :: DotGraph n -> (GlobalAttributes, ClusterLookup) getGraphInfo dg = (gas, cl) where toGA = GraphAttrs . unSame (gas, cgs) = (toGA *** M.map toGA) $ globAttrMap graphAs dg pM = M.map pInit $ clusterPath dg cl = M.mapWithKey addPath $ M.mapKeysMonotonic Just cgs addPath c as = ( maybeToList $ c `M.lookup` pM , as ) pInit p = case Seq.viewr p of (p' Seq.:> _) -> p' _ -> Seq.empty getNodeInfo :: Bool -> DotGraph n -> NodeLookup n getNodeInfo withGlob dg = M.map toLookup ns where (gGlob, aM) = globAttrMap nodeAs dg pM = clusterPath dg ns = values dg toLookup ni = (pth, as') where as = _attributes ni mp = _inCluster ni pth = fromMaybe Seq.empty $ mp `M.lookup` pM pAs = fromMaybe gGlob $ (`M.lookup` aM) =<< mp as' | withGlob = unSame $ toSAttr as `S.union` pAs | otherwise = as getEdgeInfo :: Bool -> DotGraph n -> [DotEdge n] getEdgeInfo withGlob dg = concatMap (uncurry mkDotEdges) es where gGlob = edgeAs $ graphAttrs dg es = concatMap (uncurry (map . (,))) . M.assocs . M.map (M.assocs . _successors) $ values dg addGlob as | withGlob = unSame $ toSAttr as `S.union` gGlob | otherwise = as mkDotEdges f (t, ass) = map (DotEdge f t . addGlob) ass globAttrMap :: (GlobAttrs -> SAttrs) -> DotGraph n -> (SAttrs, Map GraphID SAttrs) globAttrMap af dg = (gGlob, aM) where gGlob = af $ graphAttrs dg cs = clusters dg aM = M.map attrsFor cs attrsFor ci = as `S.union` pAs where as = af $ clusterAttrs ci p = parentCluster ci pAs = fromMaybe gGlob $ (`M.lookup` aM) =<< p clusterPath :: DotGraph n -> Map (Maybe GraphID) St.Path clusterPath = M.mapKeysMonotonic Just . M.map (fmap Just) . clusterPath' clusterPath' :: DotGraph n -> Map GraphID (Seq.Seq GraphID) clusterPath' dg = pM where cs = clusters dg pM = M.mapWithKey pathOf cs pathOf c ci = pPth Seq.|> c where mp = parentCluster ci pPth = fromMaybe Seq.empty $ (`M.lookup` pM) =<< mp -- ----------------------------------------------------------------------------- withValues :: (NodeMap n -> NodeMap n) -> DotGraph n -> DotGraph n withValues f dg = dg { values = f $ values dg } withClusters :: (Map GraphID ClusterInfo -> Map GraphID ClusterInfo) -> DotGraph n -> DotGraph n withClusters f dg = dg { clusters = f $ clusters dg } toGlobAttrs :: [GlobalAttributes] -> GlobAttrs toGlobAttrs = mkGA . partitionGlobal where mkGA (ga,na,ea) = GA (toSAttr ga) (toSAttr na) (toSAttr ea) fromGlobAttrs :: GlobAttrs -> [GlobalAttributes] fromGlobAttrs (GA ga na ea) = filter (not . null . attrs) [ GraphAttrs $ unSame ga , NodeAttrs $ unSame na , EdgeAttrs $ unSame ea ] type UpdateEdgeMap n = (EdgeMap n -> EdgeMap n) -> NodeInfo n -> NodeInfo n niSucc :: UpdateEdgeMap n niSucc f ni = ni { _successors = f $ _successors ni } niPred :: UpdateEdgeMap n niPred f ni = ni { _predecessors = f $ _predecessors ni } niSkip :: UpdateEdgeMap n niSkip _ ni = ni toMap :: (Ord n) => [(n, Attributes)] -> EdgeMap n toMap = M.fromAscList . groupSortCollectBy fst snd fromMap :: EdgeMap n -> [(n, Attributes)] fromMap = concatMap (uncurry (map . (,))) . M.toList