{-| Copyright : (C) 2015-2016, University of Twente, 2017 , QBayLogic B.V. License : BSD2 (see the file LICENSE) Maintainer : Christiaan Baaij A type checker plugin for GHC that can solve /equalities/ of types of kind 'GHC.TypeLits.Nat', where these types are either: * Type-level naturals * Type variables * Applications of the arithmetic expressions @(+,-,*,^)@. It solves these equalities by normalising them to /sort-of/ 'GHC.TypeLits.Normalise.SOP.SOP' (Sum-of-Products) form, and then perform a simple syntactic equality. For example, this solver can prove the equality between: @ (x + 2)^(y + 2) @ and @ 4*x*(2 + x)^y + 4*(2 + x)^y + (2 + x)^y*x^2 @ Because the latter is actually the 'GHC.TypeLits.Normalise.SOP.SOP' normal form of the former. To use the plugin, add @ {\-\# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise \#-\} @ To the header of your file. == Treating subtraction as addition with a negated number If you are absolutely sure that your subtractions can /never/ lead to (a locally) negative number, you can ask the plugin to treat subtraction as addition with a negated operand by additionally adding: @ {\-\# OPTIONS_GHC -fplugin-opt GHC.TypeLits.Normalise:allow-negated-numbers \#-\} @ to the header of your file, thereby allowing to use associativity and commutativity rules when proving constraints involving subtractions. Note that this option can lead to unsound behaviour and should be handled with extreme care. === When it leads to unsound behaviour For example, enabling the /allow-negated-numbers/ feature would allow you to prove: @ (n - 1) + 1 ~ n @ /without/ a @(1 <= n)@ constraint, even though when /n/ is set to /0/ the subtraction @n-1@ would be locally negative and hence not be a natural number. This would allow the following erroneous definition: @ data Fin (n :: Nat) where FZ :: Fin (n + 1) FS :: Fin n -> Fin (n + 1) f :: forall n . Natural -> Fin n f n = case of 0 -> FZ x -> FS (f \@(n-1) (x - 1)) fs :: [Fin 0] fs = f \<$\> [0..] @ === When it might be Okay This example is taken from the library. When you have: @ -- | Singleton type for the number of repetitions of an element. data Times (n :: Nat) where T :: Times n -- | An element of a "run-length encoded" vector, containing the value and -- the number of repetitions data Elem :: Type -> Nat -> Type where (:*) :: t -> Times n -> Elem t n -- | A length-indexed vector, optimised for repetitions. data OptVector :: Type -> Nat -> Type where End :: OptVector t 0 (:-) :: Elem t l -> OptVector t (n - l) -> OptVector t n @ And you want to define: @ -- | Append two optimised vectors. type family (x :: OptVector t n) ++ (y :: OptVector t m) :: OptVector t (n + m) where ys ++ End = ys End ++ ys = ys (x :- xs) ++ ys = x :- (xs ++ ys) @ then the last line will give rise to the constraint: @ (n-l)+m ~ (n+m)-l @ because: @ x :: Elem t l xs :: OptVector t (n-l) ys :: OptVector t m @ In this case it's okay to add @ {\-\# OPTIONS_GHC -fplugin-opt GHC.TypeLits.Normalise:allow-negated-numbers \#-\} @ if you can convince yourself you will never be able to construct a: @ xs :: OptVector t (n-l) @ where /n-l/ is a negative number. -} {-# LANGUAGE CPP #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TupleSections #-} {-# OPTIONS_HADDOCK show-extensions #-} module GHC.TypeLits.Normalise ( plugin ) where -- external import Control.Arrow (second) import Control.Monad (replicateM) import Control.Monad.Trans.Writer.Strict import Data.Either (rights) import Data.List (intersect) import Data.Maybe (mapMaybe) import GHC.TcPluginM.Extra (tracePlugin) #if MIN_VERSION_ghc(8,4,0) import GHC.TcPluginM.Extra (flattenGivens) #endif -- GHC API #if MIN_VERSION_ghc(8,5,0) import CoreSyn (Expr (..)) #endif import Outputable (Outputable (..), (<+>), ($$), text) import Plugins (Plugin (..), defaultPlugin) import TcEvidence (EvTerm (..)) #if !MIN_VERSION_ghc(8,4,0) import TcPluginM (zonkCt) #endif import TcPluginM (TcPluginM, tcPluginTrace) import TcRnTypes (Ct, TcPlugin (..), TcPluginResult(..), ctEvidence, ctEvPred, isWanted, mkNonCanonical) import Type (EqRel (NomEq), Kind, PredTree (EqPred), PredType, classifyPredType, eqType, getEqPredTys, mkTyVarTy) import TysWiredIn (typeNatKind) import Coercion (CoercionHole, Role (..), mkForAllCos, mkHoleCo, mkInstCo, mkNomReflCo, mkUnivCo) import TcPluginM (newCoercionHole, newFlexiTyVar) import TcRnTypes (CtEvidence (..), CtLoc, TcEvDest (..), ctLoc) #if MIN_VERSION_ghc(8,2,0) import TcRnTypes (ShadowInfo (WDeriv)) #endif import TyCoRep (UnivCoProvenance (..)) import Type (mkPrimEqPred) import TcType (typeKind) import TyCoRep (Type (..)) import TcTypeNats (typeNatAddTyCon, typeNatExpTyCon, typeNatMulTyCon, typeNatSubTyCon) import TcTypeNats (typeNatLeqTyCon) import TysWiredIn (promotedFalseDataCon, promotedTrueDataCon) -- internal import GHC.TypeLits.Normalise.Unify -- | To use the plugin, add -- -- @ -- {\-\# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise \#-\} -- @ -- -- To the header of your file. plugin :: Plugin plugin = defaultPlugin { tcPlugin = go } where go ["allow-negated-numbers"] = Just (normalisePlugin True) go _ = Just (normalisePlugin False) normalisePlugin :: Bool -> TcPlugin normalisePlugin negNumbers = tracePlugin "ghc-typelits-natnormalise" TcPlugin { tcPluginInit = return () , tcPluginSolve = const (decideEqualSOP negNumbers) , tcPluginStop = const (return ()) } decideEqualSOP :: Bool -> [Ct] -> [Ct] -> [Ct] -> TcPluginM TcPluginResult decideEqualSOP _negNumbers _givens _deriveds [] = return (TcPluginOk [] []) decideEqualSOP negNumbers givens _deriveds wanteds = do -- GHC 7.10.1 puts deriveds with the wanteds, so filter them out let wanteds' = filter (isWanted . ctEvidence) wanteds let unit_wanteds = mapMaybe toNatEquality wanteds' case unit_wanteds of [] -> return (TcPluginOk [] []) _ -> do #if MIN_VERSION_ghc(8,4,0) let unit_givens = mapMaybe toNatEquality (givens ++ flattenGivens givens) #else unit_givens <- mapMaybe toNatEquality <$> mapM zonkCt givens #endif sr <- simplifyNats negNumbers unit_givens unit_wanteds tcPluginTrace "normalised" (ppr sr) case sr of Simplified evs -> do let solved = filter (isWanted . ctEvidence . (\((_,x),_) -> x)) evs (solved',newWanteds) = second concat (unzip solved) return (TcPluginOk solved' newWanteds) Impossible eq -> return (TcPluginContradiction [fromNatEquality eq]) type NatEquality = (Ct,CoreSOP,CoreSOP) type NatInEquality = (Ct,(CoreSOP,CoreSOP,Bool)) fromNatEquality :: Either NatEquality NatInEquality -> Ct fromNatEquality (Left (ct, _, _)) = ct fromNatEquality (Right (ct, _)) = ct data SimplifyResult = Simplified [((EvTerm,Ct),[Ct])] | Impossible (Either NatEquality NatInEquality) instance Outputable SimplifyResult where ppr (Simplified evs) = text "Simplified" $$ ppr evs ppr (Impossible eq) = text "Impossible" <+> ppr eq mergeSimplifyResult :: SimplifyResult -> SimplifyResult -> SimplifyResult mergeSimplifyResult a@(Impossible _) _ = a mergeSimplifyResult _ b@(Impossible _) = b mergeSimplifyResult (Simplified a) (Simplified b) = Simplified (a ++ b) simplifyNats :: Bool -- ^ Allow negated numbers (potentially unsound!) -> [(Either NatEquality NatInEquality,[(Type,Type)])] -- ^ Given constraints -> [(Either NatEquality NatInEquality,[(Type,Type)])] -- ^ Wanted constraints -> TcPluginM SimplifyResult simplifyNats negNumbers eqsG eqsW = let eqs = map (second (const [])) eqsG ++ eqsW in tcPluginTrace "simplifyNats" (ppr eqs) >> simples [] [] [] eqs where -- If we allow negated numbers we simply do not emit the inequalities -- derived from the subtractions that are converted to additions with a -- negated operand subToPred | negNumbers = const [] | otherwise = map subtractionToPred simples :: [CoreUnify] -> [((EvTerm, Ct), [Ct])] -> [(Either NatEquality NatInEquality,[(Type,Type)])] -> [(Either NatEquality NatInEquality,[(Type,Type)])] -> TcPluginM SimplifyResult simples _subst evs _xs [] = return (Simplified evs) simples subst evs xs (eq@(Left (ct,u,v),k):eqs') = do ur <- unifyNats ct (substsSOP subst u) (substsSOP subst v) tcPluginTrace "unifyNats result" (ppr ur) case ur of Win -> do evs' <- maybe evs (:evs) <$> evMagic ct (subToPred k) simples subst evs' [] (xs ++ eqs') Lose -> return (Impossible (fst eq)) Draw [] -> simples subst evs (eq:xs) eqs' Draw subst' -> do evM <- evMagic ct (map unifyItemToPredType subst' ++ subToPred k) case evM of Nothing -> simples subst evs xs eqs' Just ev -> simples (substsSubst subst' subst ++ subst') (ev:evs) [] (xs ++ eqs') simples subst evs xs (eq@(Right (ct,u),k):eqs') = do let u' = substsSOP subst (subtractIneq u) ineqs = map snd (rights (map fst eqsG)) tcPluginTrace "unifyNats(ineq) results" (ppr (ct,u,u')) case isNatural u' of Just True -> do evs' <- maybe evs (:evs) <$> evMagic ct (subToPred k) case ineqToSubst u of Just s | u `elem` ineqs -> mergeSimplifyResult <$> simples (substsSubst [s] subst ++ [s]) evs' [] (xs ++ eqs') <*> simples subst evs' xs eqs' _ -> simples subst evs' xs eqs' Just False -> return (Impossible (fst eq)) Nothing -- This inequality is either a given constraint, or it is a wanted -- constraint, which in normal form is equal to another given -- constraint, hence it can be solved. | or (mapMaybe (solveIneq 5 u) ineqs) -> do evs' <- maybe evs (:evs) <$> evMagic ct (subToPred k) case ineqToSubst u of Just s | u `elem` ineqs -> mergeSimplifyResult <$> simples (substsSubst [s] subst ++ [s]) evs' [] (xs ++ eqs') <*> simples subst evs' xs eqs' _ -> simples subst evs' xs eqs' | otherwise -> simples subst evs (eq:xs) eqs' -- Extract the Nat equality constraints toNatEquality :: Ct -> Maybe (Either NatEquality NatInEquality,[(Type,Type)]) toNatEquality ct = case classifyPredType $ ctEvPred $ ctEvidence ct of EqPred NomEq t1 t2 -> go t1 t2 _ -> Nothing where go (TyConApp tc xs) (TyConApp tc' ys) | tc == tc' , null ([tc,tc'] `intersect` [typeNatAddTyCon,typeNatSubTyCon ,typeNatMulTyCon,typeNatExpTyCon]) = case filter (not . uncurry eqType) (zip xs ys) of [(x,y)] | isNatKind (typeKind x) , isNatKind (typeKind y) , let (x',k1) = runWriter (normaliseNat x) , let (y',k2) = runWriter (normaliseNat y) -> Just (Left (ct, x', y'),k1 ++ k2) _ -> Nothing | tc == typeNatLeqTyCon , [x,y] <- xs , let (x',k1) = runWriter (normaliseNat x) , let (y',k2) = runWriter (normaliseNat y) , let ks = k1 ++ k2 = case tc' of _ | tc' == promotedTrueDataCon -> Just (Right (ct, (x', y', True)), ks) _ | tc' == promotedFalseDataCon -> Just (Right (ct, (x', y', False)), ks) _ -> Nothing go x y | isNatKind (typeKind x) , isNatKind (typeKind y) , let (x',k1) = runWriter (normaliseNat x) , let (y',k2) = runWriter (normaliseNat y) = Just (Left (ct,x',y'),k1 ++ k2) | otherwise = Nothing isNatKind :: Kind -> Bool isNatKind = (`eqType` typeNatKind) unifyItemToPredType :: CoreUnify -> PredType unifyItemToPredType ui = mkPrimEqPred ty1 ty2 where ty1 = case ui of SubstItem {..} -> mkTyVarTy siVar UnifyItem {..} -> reifySOP siLHS ty2 = case ui of SubstItem {..} -> reifySOP siSOP UnifyItem {..} -> reifySOP siRHS evMagic :: Ct -> [PredType] -> TcPluginM (Maybe ((EvTerm, Ct), [Ct])) evMagic ct preds = case classifyPredType $ ctEvPred $ ctEvidence ct of EqPred NomEq t1 t2 -> do #if MIN_VERSION_ghc(8,4,1) holes <- mapM (newCoercionHole . uncurry mkPrimEqPred . getEqPredTys) preds #else holes <- replicateM (length preds) newCoercionHole #endif let newWanted = zipWith (unifyItemToCt (ctLoc ct)) preds holes ctEv = mkUnivCo (PluginProv "ghc-typelits-natnormalise") Nominal t1 t2 #if MIN_VERSION_ghc(8,4,1) holeEvs = map mkHoleCo holes #else holeEvs = zipWith (\h p -> uncurry (mkHoleCo h Nominal) (getEqPredTys p)) holes preds #endif natReflCo = mkNomReflCo typeNatKind natCoBndr = (,natReflCo) <$> (newFlexiTyVar typeNatKind) forallEv <- mkForAllCos <$> (replicateM (length preds) natCoBndr) <*> pure ctEv let finalEv = foldl mkInstCo forallEv holeEvs #if MIN_VERSION_ghc(8,5,0) return (Just ((EvExpr (Coercion finalEv), ct),newWanted)) #else return (Just ((EvCoercion finalEv, ct),newWanted)) #endif _ -> return Nothing unifyItemToCt :: CtLoc -> PredType -> CoercionHole -> Ct unifyItemToCt loc pred_type hole = mkNonCanonical (CtWanted pred_type (HoleDest hole) #if MIN_VERSION_ghc(8,2,0) WDeriv #endif loc)