module GHC.TypeLits.Normalise
( plugin )
where
import Control.Arrow (second)
import Control.Monad (replicateM)
import Data.Either (rights)
import Data.List (intersect)
import Data.Maybe (mapMaybe)
import GHC.TcPluginM.Extra (tracePlugin)
import Outputable (Outputable (..), (<+>), ($$), text)
import Plugins (Plugin (..), defaultPlugin)
import TcEvidence (EvTerm (..))
import TcPluginM (TcPluginM, tcPluginTrace, zonkCt)
import TcRnTypes (Ct, TcPlugin (..), TcPluginResult(..), ctEvidence, ctEvPred,
isWanted, mkNonCanonical)
import Type (EqRel (NomEq), Kind, PredTree (EqPred), PredType,
classifyPredType, eqType, getEqPredTys, mkTyVarTy)
import TysWiredIn (typeNatKind)
import Coercion (CoercionHole, Role (..), mkForAllCos, mkHoleCo, mkInstCo,
mkNomReflCo, mkUnivCo)
import TcPluginM (newCoercionHole, newFlexiTyVar)
import TcRnTypes (CtEvidence (..), CtLoc, TcEvDest (..), ctLoc)
#if MIN_VERSION_ghc(8,2,0)
import TcRnTypes (ShadowInfo (WDeriv))
#endif
import TyCoRep (UnivCoProvenance (..))
import Type (mkPrimEqPred)
import TcType (typeKind)
import TyCoRep (Type (..))
import TcTypeNats (typeNatAddTyCon, typeNatExpTyCon, typeNatMulTyCon,
typeNatSubTyCon)
import TcTypeNats (typeNatLeqTyCon)
import Type (mkNumLitTy,mkTyConApp)
import TysWiredIn (promotedFalseDataCon, promotedTrueDataCon)
import GHC.TypeLits.Normalise.Unify
plugin :: Plugin
plugin = defaultPlugin { tcPlugin = const $ Just normalisePlugin }
normalisePlugin :: TcPlugin
normalisePlugin = tracePlugin "ghc-typelits-natnormalise"
TcPlugin { tcPluginInit = return ()
, tcPluginSolve = const decideEqualSOP
, tcPluginStop = const (return ())
}
decideEqualSOP :: [Ct] -> [Ct] -> [Ct]
-> TcPluginM TcPluginResult
decideEqualSOP _givens _deriveds [] = return (TcPluginOk [] [])
decideEqualSOP givens _deriveds wanteds = do
let wanteds' = filter (isWanted . ctEvidence) wanteds
let unit_wanteds = mapMaybe toNatEquality wanteds'
case unit_wanteds of
[] -> return (TcPluginOk [] [])
_ -> do
unit_givens <- mapMaybe toNatEquality <$> mapM zonkCt givens
sr <- simplifyNats unit_givens unit_wanteds
tcPluginTrace "normalised" (ppr sr)
case sr of
Simplified evs -> do
let solved = filter (isWanted . ctEvidence . (\((_,x),_) -> x)) evs
(solved',newWanteds) = second concat (unzip solved)
return (TcPluginOk solved' newWanteds)
Impossible eq -> return (TcPluginContradiction [fromNatEquality eq])
type NatEquality = (Ct,CoreSOP,CoreSOP)
type NatInEquality = (Ct,CoreSOP)
fromNatEquality :: Either NatEquality NatInEquality -> Ct
fromNatEquality (Left (ct, _, _)) = ct
fromNatEquality (Right (ct, _)) = ct
data SimplifyResult
= Simplified [((EvTerm,Ct),[Ct])]
| Impossible (Either NatEquality NatInEquality)
instance Outputable SimplifyResult where
ppr (Simplified evs) = text "Simplified" $$ ppr evs
ppr (Impossible eq) = text "Impossible" <+> ppr eq
simplifyNats
:: [Either NatEquality NatInEquality]
-> [Either NatEquality NatInEquality]
-> TcPluginM SimplifyResult
simplifyNats eqsG eqsW =
let eqs = eqsG ++ eqsW
in tcPluginTrace "simplifyNats" (ppr eqs) >> simples [] [] [] eqs
where
simples :: [CoreUnify]
-> [((EvTerm, Ct), [Ct])]
-> [Either NatEquality NatInEquality]
-> [Either NatEquality NatInEquality]
-> TcPluginM SimplifyResult
simples _subst evs _xs [] = return (Simplified evs)
simples subst evs xs (eq@(Left (ct,u,v)):eqs') = do
ur <- unifyNats ct (substsSOP subst u) (substsSOP subst v)
tcPluginTrace "unifyNats result" (ppr ur)
case ur of
Win -> do
evs' <- maybe evs (:evs) <$> evMagic ct []
simples subst evs' [] (xs ++ eqs')
Lose -> return (Impossible eq)
Draw [] -> simples subst evs (eq:xs) eqs'
Draw subst' -> do
evM <- evMagic ct (map unifyItemToPredType subst')
case evM of
Nothing -> simples subst evs xs eqs'
Just ev ->
simples (substsSubst subst' subst ++ subst')
(ev:evs) [] (xs ++ eqs')
simples subst evs xs (eq@(Right (ct,u)):eqs') = do
let u' = substsSOP subst u
tcPluginTrace "unifyNats(ineq) results" (ppr (ct,u'))
case isNatural u' of
Just True -> do
evs' <- maybe evs (:evs) <$> evMagic ct []
simples subst evs' xs eqs'
Just False -> return (Impossible eq)
Nothing ->
if u `elem` (map snd (rights eqsG))
then do
evs' <- maybe evs (:evs) <$> evMagic ct []
simples subst evs' xs eqs'
else simples subst evs (eq:xs) eqs'
toNatEquality :: Ct -> Maybe (Either NatEquality NatInEquality)
toNatEquality ct = case classifyPredType $ ctEvPred $ ctEvidence ct of
EqPred NomEq t1 t2
-> go t1 t2
_ -> Nothing
where
go (TyConApp tc xs) (TyConApp tc' ys)
| tc == tc'
, null ([tc,tc'] `intersect` [typeNatAddTyCon,typeNatSubTyCon
,typeNatMulTyCon,typeNatExpTyCon])
= case filter (not . uncurry eqType) (zip xs ys) of
[(x,y)] | isNatKind (typeKind x) && isNatKind (typeKind y)
-> Just (Left (ct, normaliseNat x, normaliseNat y))
_ -> Nothing
| tc == typeNatLeqTyCon
, [x,y] <- xs
= if tc' == promotedTrueDataCon
then Just (Right (ct,normaliseNat (mkTyConApp typeNatSubTyCon [y,x])))
else if tc' == promotedFalseDataCon
then Just (Right (ct,normaliseNat (mkTyConApp typeNatSubTyCon [x,mkTyConApp typeNatAddTyCon [y,mkNumLitTy 1]])))
else Nothing
go x y
| isNatKind (typeKind x) && isNatKind (typeKind y)
= Just (Left (ct,normaliseNat x,normaliseNat y))
| otherwise
= Nothing
isNatKind :: Kind -> Bool
isNatKind = (`eqType` typeNatKind)
unifyItemToPredType :: CoreUnify -> PredType
unifyItemToPredType ui =
mkPrimEqPred ty1 ty2
where
ty1 = case ui of
SubstItem {..} -> mkTyVarTy siVar
UnifyItem {..} -> reifySOP siLHS
ty2 = case ui of
SubstItem {..} -> reifySOP siSOP
UnifyItem {..} -> reifySOP siRHS
evMagic :: Ct -> [PredType] -> TcPluginM (Maybe ((EvTerm, Ct), [Ct]))
evMagic ct preds = case classifyPredType $ ctEvPred $ ctEvidence ct of
EqPred NomEq t1 t2 -> do
holes <- replicateM (length preds) newCoercionHole
let newWanted = zipWith (unifyItemToCt (ctLoc ct)) preds holes
ctEv = mkUnivCo (PluginProv "ghc-typelits-natnormalise") Nominal t1 t2
holeEvs = zipWith (\h p -> uncurry (mkHoleCo h Nominal) (getEqPredTys p)) holes preds
natReflCo = mkNomReflCo typeNatKind
natCoBndr = (,natReflCo) <$> (newFlexiTyVar typeNatKind)
forallEv <- mkForAllCos <$> (replicateM (length preds) natCoBndr) <*> pure ctEv
let finalEv = foldl mkInstCo forallEv holeEvs
return (Just ((EvCoercion finalEv, ct),newWanted))
_ -> return Nothing
unifyItemToCt :: CtLoc
-> PredType
-> CoercionHole
-> Ct
unifyItemToCt loc pred_type hole =
mkNonCanonical
(CtWanted
pred_type
(HoleDest hole)
#if MIN_VERSION_ghc(8,2,0)
WDeriv
#endif
loc)