{-# LANGUAGE CPP #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE BlockArguments #-} #include "MachDeps.h" #include "WordSize.h" module GHC.Num.Natural ( Natural(..) , naturalCheck# , naturalCheck -- * Useful constants , naturalZero , naturalOne -- * Predicates , naturalIsZero , naturalIsOne , naturalIsPowerOf2# -- * Conversion with... -- ** 'BigNat' , naturalFromBigNat# , naturalToBigNat# -- ** 'Word' , naturalFromWord# , naturalFromWord2# , naturalFromWord , naturalToWord# , naturalToWord , naturalToWordClamp# , naturalToWordClamp , naturalToWordMaybe# -- ** Limbs , naturalFromWordList , naturalToMutableByteArray# , naturalFromByteArray# -- ** Floating point , naturalEncodeDouble# , naturalEncodeFloat# -- ** 'Addr#' , naturalToAddr# , naturalToAddr , naturalFromAddr# , naturalFromAddr -- * Comparison , naturalEq# , naturalEq , naturalNe# , naturalNe , naturalGe# , naturalGe , naturalLe# , naturalLe , naturalGt# , naturalGt , naturalLt# , naturalLt , naturalCompare -- * Bit operations , naturalPopCount# , naturalPopCount , naturalShiftR# , naturalShiftR , naturalShiftL# , naturalShiftL , naturalAnd , naturalAndNot , naturalOr , naturalXor , naturalTestBit# , naturalTestBit , naturalBit# , naturalBit , naturalSetBit# , naturalSetBit , naturalClearBit# , naturalClearBit , naturalComplementBit# , naturalComplementBit -- * Arithmetic , naturalAdd , naturalSub , naturalSubThrow , naturalSubUnsafe , naturalMul , naturalSqr , naturalSignum , naturalNegate , naturalQuotRem# , naturalQuotRem , naturalQuot , naturalRem , naturalGcd , naturalLcm , naturalLog2# , naturalLog2 , naturalLogBaseWord# , naturalLogBaseWord , naturalLogBase# , naturalLogBase , naturalPowMod -- * Miscellaneous , naturalSizeInBase# ) where import GHC.Prim import GHC.Types import GHC.Classes import GHC.Num.BigNat import GHC.Num.Primitives default () -- | Natural number -- -- Invariant: numbers <= WORD_MAXBOUND use the `NS` constructor data Natural = NS !Word# | NB !BigNat# instance Eq Natural where (==) = naturalEq (/=) = naturalNe instance Ord Natural where compare = naturalCompare (>) = naturalGt (>=) = naturalGe (<) = naturalLt (<=) = naturalLe -- | Check Natural invariants naturalCheck# :: Natural -> Bool# naturalCheck# (NS _) = 1# naturalCheck# (NB bn) = bigNatCheck# bn &&# bigNatSize# bn ># 1# -- | Check Natural invariants naturalCheck :: Natural -> Bool naturalCheck !n = isTrue# (naturalCheck# n) -- | Zero Natural naturalZero :: Natural naturalZero = NS 0## -- | One Natural naturalOne :: Natural naturalOne = NS 1## -- | Test Zero Natural naturalIsZero :: Natural -> Bool naturalIsZero (NS 0##) = True naturalIsZero _ = False -- | Test One Natural naturalIsOne :: Natural -> Bool naturalIsOne (NS 1##) = True naturalIsOne _ = False -- | Indicate if the value is a power of two and which one naturalIsPowerOf2# :: Natural -> (# (# #) | Word# #) naturalIsPowerOf2# (NS w) = wordIsPowerOf2# w naturalIsPowerOf2# (NB w) = bigNatIsPowerOf2# w -- | Create a Natural from a BigNat# (respect the invariants) naturalFromBigNat# :: BigNat# -> Natural {-# NOINLINE naturalFromBigNat# #-} naturalFromBigNat# x = case bigNatSize# x of 0# -> naturalZero 1# -> NS (bigNatIndex# x 0#) _ -> NB x -- | Convert a Natural into a BigNat# naturalToBigNat# :: Natural -> BigNat# {-# NOINLINE naturalToBigNat# #-} naturalToBigNat# (NS w) = bigNatFromWord# w naturalToBigNat# (NB bn) = bn -- | Create a Natural from a Word# naturalFromWord# :: Word# -> Natural naturalFromWord# x = NS x -- | Convert two Word# (most-significant first) into a Natural naturalFromWord2# :: Word# -> Word# -> Natural naturalFromWord2# 0## 0## = naturalZero naturalFromWord2# 0## l = NS l naturalFromWord2# h l = NB (bigNatFromWord2# h l) -- | Create a Natural from a Word naturalFromWord :: Word -> Natural naturalFromWord (W# x) = NS x -- | Create a Natural from a list of Word naturalFromWordList :: [Word] -> Natural naturalFromWordList xs = naturalFromBigNat# (bigNatFromWordList xs) -- | Convert the lower bits of a Natural into a Word# naturalToWord# :: Natural -> Word# {-# NOINLINE naturalToWord# #-} naturalToWord# (NS x) = x naturalToWord# (NB b) = bigNatIndex# b 0# -- | Convert the lower bits of a Natural into a Word naturalToWord :: Natural -> Word naturalToWord !n = W# (naturalToWord# n) -- | Convert a Natural into a Word# clamping to (maxBound :: Word#). naturalToWordClamp# :: Natural -> Word# naturalToWordClamp# (NS x) = x naturalToWordClamp# (NB _) = WORD_MAXBOUND## -- | Convert a Natural into a Word# clamping to (maxBound :: Word). naturalToWordClamp :: Natural -> Word naturalToWordClamp !n = W# (naturalToWordClamp# n) -- | Try downcasting 'Natural' to 'Word' value. -- Returns '(##)' if value doesn't fit in 'Word'. naturalToWordMaybe# :: Natural -> (# (# #) | Word# #) naturalToWordMaybe# (NS w) = (# | w #) naturalToWordMaybe# _ = (# (# #) | #) -- | Encode (# Natural mantissa, Int# exponent #) into a Double# naturalEncodeDouble# :: Natural -> Int# -> Double# naturalEncodeDouble# (NS w) 0# = word2Double# w naturalEncodeDouble# (NS w) e = wordEncodeDouble# w e naturalEncodeDouble# (NB b) e = bigNatEncodeDouble# b e -- | Encode (# Natural mantissa, Int# exponent #) into a Float# -- -- TODO: Not sure if it's worth to write 'Float' optimized versions here naturalEncodeFloat# :: Natural -> Int# -> Float# naturalEncodeFloat# !m e = double2Float# (naturalEncodeDouble# m e) -- | Equality test for Natural naturalEq# :: Natural -> Natural -> Bool# naturalEq# (NS x) (NS y) = x `eqWord#` y naturalEq# (NB x) (NB y) = bigNatEq# x y naturalEq# _ _ = 0# -- | Equality test for Natural naturalEq :: Natural -> Natural -> Bool naturalEq !x !y = isTrue# (naturalEq# x y) -- | Inequality test for Natural naturalNe# :: Natural -> Natural -> Bool# naturalNe# (NS x) (NS y) = x `neWord#` y naturalNe# (NB x) (NB y) = bigNatNe# x y naturalNe# _ _ = 1# -- | Inequality test for Natural naturalNe :: Natural -> Natural -> Bool naturalNe !x !y = isTrue# (naturalNe# x y) -- | Greater or equal test for Natural naturalGe# :: Natural -> Natural -> Bool# naturalGe# (NS x) (NS y) = x `geWord#` y naturalGe# (NS _) (NB _) = 0# naturalGe# (NB _) (NS _) = 1# naturalGe# (NB x) (NB y) = bigNatGe# x y -- | Greater or equal test for Natural naturalGe :: Natural -> Natural -> Bool naturalGe !x !y = isTrue# (naturalGe# x y) -- | Lower or equal test for Natural naturalLe# :: Natural -> Natural -> Bool# naturalLe# (NS x) (NS y) = x `leWord#` y naturalLe# (NS _) (NB _) = 1# naturalLe# (NB _) (NS _) = 0# naturalLe# (NB x) (NB y) = bigNatLe# x y -- | Lower or equal test for Natural naturalLe :: Natural -> Natural -> Bool naturalLe !x !y = isTrue# (naturalLe# x y) -- | Greater test for Natural naturalGt# :: Natural -> Natural -> Bool# naturalGt# (NS x) (NS y) = x `gtWord#` y naturalGt# (NS _) (NB _) = 0# naturalGt# (NB _) (NS _) = 1# naturalGt# (NB x) (NB y) = bigNatGt# x y -- | Greater test for Natural naturalGt :: Natural -> Natural -> Bool naturalGt !x !y = isTrue# (naturalGt# x y) -- | Lower test for Natural naturalLt# :: Natural -> Natural -> Bool# naturalLt# (NS x) (NS y) = x `ltWord#` y naturalLt# (NS _) (NB _) = 1# naturalLt# (NB _) (NS _) = 0# naturalLt# (NB x) (NB y) = bigNatLt# x y -- | Lower test for Natural naturalLt :: Natural -> Natural -> Bool naturalLt !x !y = isTrue# (naturalLt# x y) -- | Compare two Natural naturalCompare :: Natural -> Natural -> Ordering naturalCompare (NS x) (NS y) = cmpW# x y naturalCompare (NB x) (NB y) = bigNatCompare x y naturalCompare (NS _) (NB _) = LT naturalCompare (NB _) (NS _) = GT -- | PopCount for Natural naturalPopCount# :: Natural -> Word# {-# NOINLINE naturalPopCount# #-} naturalPopCount# (NS x) = popCnt# x naturalPopCount# (NB x) = bigNatPopCount# x -- | PopCount for Natural naturalPopCount :: Natural -> Word naturalPopCount (NS x) = W# (popCnt# x) naturalPopCount (NB x) = bigNatPopCount x -- | Right shift for Natural naturalShiftR# :: Natural -> Word# -> Natural {-# NOINLINE naturalShiftR# #-} naturalShiftR# (NS x) n = NS (x `shiftRW#` n) naturalShiftR# (NB x) n = naturalFromBigNat# (x `bigNatShiftR#` n) -- | Right shift for Natural naturalShiftR :: Natural -> Word -> Natural naturalShiftR x (W# n) = naturalShiftR# x n -- | Left shift naturalShiftL# :: Natural -> Word# -> Natural {-# NOINLINE naturalShiftL# #-} naturalShiftL# v@(NS x) n | 0## <- x = v | isTrue# (clz# x `geWord#` n) = NS (x `uncheckedShiftL#` word2Int# n) | True = NB (bigNatFromWord# x `bigNatShiftL#` n) naturalShiftL# (NB x) n = NB (x `bigNatShiftL#` n) -- | Left shift naturalShiftL :: Natural -> Word -> Natural naturalShiftL !x (W# n) = naturalShiftL# x n -- | Add two naturals naturalAdd :: Natural -> Natural -> Natural {-# NOINLINE naturalAdd #-} naturalAdd (NS x) (NB y) = NB (bigNatAddWord# y x) naturalAdd (NB x) (NS y) = NB (bigNatAddWord# x y) naturalAdd (NB x) (NB y) = NB (bigNatAdd x y) naturalAdd (NS x) (NS y) = case addWordC# x y of (# l,0# #) -> NS l (# l,c #) -> NB (bigNatFromWord2# (int2Word# c) l) -- | Sub two naturals naturalSub :: Natural -> Natural -> (# (# #) | Natural #) {-# NOINLINE naturalSub #-} naturalSub (NS _) (NB _) = (# (# #) | #) naturalSub (NB x) (NS y) = (# | naturalFromBigNat# (bigNatSubWordUnsafe# x y) #) naturalSub (NS x) (NS y) = case subWordC# x y of (# l,0# #) -> (# | NS l #) (# _,_ #) -> (# (# #) | #) naturalSub (NB x) (NB y) = case bigNatSub x y of (# (# #) | #) -> (# (# #) | #) (# | z #) -> (# | naturalFromBigNat# z #) -- | Sub two naturals -- -- Throw an Underflow exception if x < y naturalSubThrow :: Natural -> Natural -> Natural {-# NOINLINE naturalSubThrow #-} naturalSubThrow (NS _) (NB _) = raiseUnderflow naturalSubThrow (NB x) (NS y) = naturalFromBigNat# (bigNatSubWordUnsafe# x y) naturalSubThrow (NS x) (NS y) = case subWordC# x y of (# l,0# #) -> NS l (# _,_ #) -> raiseUnderflow naturalSubThrow (NB x) (NB y) = case bigNatSub x y of (# (# #) | #) -> raiseUnderflow (# | z #) -> naturalFromBigNat# z -- | Sub two naturals -- -- Unsafe: don't check that x >= y -- Undefined results if it happens naturalSubUnsafe :: Natural -> Natural -> Natural {-# NOINLINE naturalSubUnsafe #-} naturalSubUnsafe (NS x) (NS y) = NS (minusWord# x y) naturalSubUnsafe (NS _) (NB _) = naturalZero naturalSubUnsafe (NB x) (NS y) = naturalFromBigNat# (bigNatSubWordUnsafe# x y) naturalSubUnsafe (NB x) (NB y) = case bigNatSub x y of (# (# #) | #) -> naturalZero (# | z #) -> naturalFromBigNat# z -- | Multiplication naturalMul :: Natural -> Natural -> Natural {-# NOINLINE naturalMul #-} naturalMul a b = case a of NS 0## -> NS 0## NS 1## -> b NS x -> case b of NS 0## -> NS 0## NS 1## -> a NS y -> case timesWord2# x y of (# h,l #) -> naturalFromWord2# h l NB y -> NB (bigNatMulWord# y x) NB x -> case b of NS 0## -> NS 0## NS 1## -> a NS y -> NB (bigNatMulWord# x y) NB y -> NB (bigNatMul x y) -- | Square a Natural naturalSqr :: Natural -> Natural naturalSqr !a = naturalMul a a -- | Signum for Natural naturalSignum :: Natural -> Natural naturalSignum (NS 0##) = NS 0## naturalSignum _ = NS 1## -- | Negate for Natural naturalNegate :: Natural -> Natural naturalNegate (NS 0##) = NS 0## naturalNegate _ = raiseUnderflow -- | Return division quotient and remainder -- -- Division by zero is handled by BigNat naturalQuotRem# :: Natural -> Natural -> (# Natural, Natural #) {-# NOINLINE naturalQuotRem# #-} naturalQuotRem# (NS n) (NS d) = case quotRemWord# n d of (# q, r #) -> (# NS q, NS r #) naturalQuotRem# (NB n) (NS d) = case bigNatQuotRemWord# n d of (# q, r #) -> (# naturalFromBigNat# q, NS r #) naturalQuotRem# (NS n) (NB d) = case bigNatQuotRem# (bigNatFromWord# n) d of (# q, r #) -> (# naturalFromBigNat# q, naturalFromBigNat# r #) naturalQuotRem# (NB n) (NB d) = case bigNatQuotRem# n d of (# q, r #) -> (# naturalFromBigNat# q, naturalFromBigNat# r #) -- | Return division quotient and remainder naturalQuotRem :: Natural -> Natural -> (Natural, Natural) naturalQuotRem !n !d = case naturalQuotRem# n d of (# q, r #) -> (q,r) -- | Return division quotient naturalQuot :: Natural -> Natural -> Natural {-# NOINLINE naturalQuot #-} naturalQuot (NS n) (NS d) = case quotWord# n d of q -> NS q naturalQuot (NB n) (NS d) = case bigNatQuotWord# n d of q -> naturalFromBigNat# q naturalQuot (NS n) (NB d) = case bigNatQuot (bigNatFromWord# n) d of q -> naturalFromBigNat# q naturalQuot (NB n) (NB d) = case bigNatQuot n d of q -> naturalFromBigNat# q -- | Return division remainder naturalRem :: Natural -> Natural -> Natural {-# NOINLINE naturalRem #-} naturalRem (NS n) (NS d) = case remWord# n d of r -> NS r naturalRem (NB n) (NS d) = case bigNatRemWord# n d of r -> NS r naturalRem (NS n) (NB d) = case bigNatRem (bigNatFromWord# n) d of r -> naturalFromBigNat# r naturalRem (NB n) (NB d) = case bigNatRem n d of r -> naturalFromBigNat# r naturalAnd :: Natural -> Natural -> Natural {-# NOINLINE naturalAnd #-} naturalAnd (NS n) (NS m) = NS (n `and#` m) naturalAnd (NS n) (NB m) = NS (n `and#` bigNatToWord# m) naturalAnd (NB n) (NS m) = NS (bigNatToWord# n `and#` m) naturalAnd (NB n) (NB m) = naturalFromBigNat# (bigNatAnd n m) naturalAndNot :: Natural -> Natural -> Natural {-# NOINLINE naturalAndNot #-} naturalAndNot (NS n) (NS m) = NS (n `and#` not# m) naturalAndNot (NS n) (NB m) = NS (n `and#` not# (bigNatToWord# m)) naturalAndNot (NB n) (NS m) = NS (bigNatToWord# n `and#` not# m) naturalAndNot (NB n) (NB m) = naturalFromBigNat# (bigNatAndNot n m) naturalOr :: Natural -> Natural -> Natural {-# NOINLINE naturalOr #-} naturalOr (NS n) (NS m) = NS (n `or#` m) naturalOr (NS n) (NB m) = NB (bigNatOrWord# m n) naturalOr (NB n) (NS m) = NB (bigNatOrWord# n m) naturalOr (NB n) (NB m) = NB (bigNatOr n m) naturalXor :: Natural -> Natural -> Natural {-# NOINLINE naturalXor #-} naturalXor (NS n) (NS m) = NS (n `xor#` m) naturalXor (NS n) (NB m) = NB (bigNatXorWord# m n) naturalXor (NB n) (NS m) = NB (bigNatXorWord# n m) naturalXor (NB n) (NB m) = naturalFromBigNat# (bigNatXor n m) naturalTestBit# :: Natural -> Word# -> Bool# {-# NOINLINE naturalTestBit# #-} naturalTestBit# (NS w) i = (i `ltWord#` WORD_SIZE_IN_BITS##) &&# ((w `and#` (1## `uncheckedShiftL#` word2Int# i)) `neWord#` 0##) naturalTestBit# (NB bn) i = bigNatTestBit# bn i naturalTestBit :: Natural -> Word -> Bool naturalTestBit !n (W# i) = isTrue# (naturalTestBit# n i) naturalBit# :: Word# -> Natural {-# NOINLINE naturalBit# #-} naturalBit# i | isTrue# (i `ltWord#` WORD_SIZE_IN_BITS##) = NS (1## `uncheckedShiftL#` word2Int# i) | True = NB (bigNatBit# i) naturalBit :: Word -> Natural naturalBit (W# i) = naturalBit# i -- | @since 1.3 naturalSetBit# :: Natural -> Word# -> Natural naturalSetBit# (NS n) i | isTrue# (i `ltWord#` WORD_SIZE_IN_BITS##) = NS (n `or#` (1## `uncheckedShiftL#` word2Int# i)) | True = NB (bigNatSetBit# (bigNatFromWord# n) i) naturalSetBit# (NB n) i = NB (bigNatSetBit# n i) -- | @since 1.3 naturalSetBit :: Natural -> Word -> Natural naturalSetBit !n (W# i) = naturalSetBit# n i -- | @since 1.3 naturalClearBit# :: Natural -> Word# -> Natural naturalClearBit# x@(NS n) i | isTrue# (i `ltWord#` WORD_SIZE_IN_BITS##) = NS (n `and#` not# (1## `uncheckedShiftL#` word2Int# i)) | True = x naturalClearBit# (NB n) i = naturalFromBigNat# (bigNatClearBit# n i) -- | @since 1.3 naturalClearBit :: Natural -> Word -> Natural naturalClearBit !n (W# i) = naturalClearBit# n i -- | @since 1.3 naturalComplementBit# :: Natural -> Word# -> Natural naturalComplementBit# (NS n) i | isTrue# (i `ltWord#` WORD_SIZE_IN_BITS##) = NS (n `xor#` (1## `uncheckedShiftL#` word2Int# i)) | True = NB (bigNatSetBit# (bigNatFromWord# n) i) naturalComplementBit# (NB n) i = naturalFromBigNat# (bigNatComplementBit# n i) -- | @since 1.3 naturalComplementBit :: Natural -> Word -> Natural naturalComplementBit !n (W# i) = naturalComplementBit# n i -- | Compute greatest common divisor. naturalGcd :: Natural -> Natural -> Natural {-# NOINLINE naturalGcd #-} naturalGcd (NS 0##) !y = y naturalGcd x (NS 0##) = x naturalGcd (NS 1##) _ = NS 1## naturalGcd _ (NS 1##) = NS 1## naturalGcd (NB x) (NB y) = naturalFromBigNat# (bigNatGcd x y) naturalGcd (NB x) (NS y) = NS (bigNatGcdWord# x y) naturalGcd (NS x) (NB y) = NS (bigNatGcdWord# y x) naturalGcd (NS x) (NS y) = NS (gcdWord# x y) -- | Compute least common multiple. naturalLcm :: Natural -> Natural -> Natural {-# NOINLINE naturalLcm #-} naturalLcm (NS 0##) !_ = NS 0## naturalLcm _ (NS 0##) = NS 0## naturalLcm (NS 1##) y = y naturalLcm x (NS 1##) = x naturalLcm (NS a ) (NS b ) = naturalFromBigNat# (bigNatLcmWordWord# a b) naturalLcm (NB a ) (NS b ) = naturalFromBigNat# (bigNatLcmWord# a b) naturalLcm (NS a ) (NB b ) = naturalFromBigNat# (bigNatLcmWord# b a) naturalLcm (NB a ) (NB b ) = naturalFromBigNat# (bigNatLcm a b) -- | Base 2 logarithm naturalLog2# :: Natural -> Word# {-# NOINLINE naturalLog2# #-} naturalLog2# (NS w) = wordLog2# w naturalLog2# (NB b) = bigNatLog2# b -- | Base 2 logarithm naturalLog2 :: Natural -> Word naturalLog2 !n = W# (naturalLog2# n) -- | Logarithm for an arbitrary base naturalLogBaseWord# :: Word# -> Natural -> Word# {-# NOINLINE naturalLogBaseWord# #-} naturalLogBaseWord# base (NS a) = wordLogBase# base a naturalLogBaseWord# base (NB a) = bigNatLogBaseWord# base a -- | Logarithm for an arbitrary base naturalLogBaseWord :: Word -> Natural -> Word naturalLogBaseWord (W# base) !a = W# (naturalLogBaseWord# base a) -- | Logarithm for an arbitrary base naturalLogBase# :: Natural -> Natural -> Word# {-# NOINLINE naturalLogBase# #-} naturalLogBase# (NS base) !a = naturalLogBaseWord# base a naturalLogBase# (NB _ ) (NS _) = 0## naturalLogBase# (NB base) (NB a) = bigNatLogBase# base a -- | Logarithm for an arbitrary base naturalLogBase :: Natural -> Natural -> Word naturalLogBase !base !a = W# (naturalLogBase# base a) -- | \"@'naturalPowMod' /b/ /e/ /m/@\" computes base @/b/@ raised to -- exponent @/e/@ modulo @/m/@. naturalPowMod :: Natural -> Natural -> Natural -> Natural {-# NOINLINE naturalPowMod #-} naturalPowMod !_ !_ (NS 0##) = raiseDivZero naturalPowMod _ _ (NS 1##) = NS 0## naturalPowMod _ (NS 0##) _ = NS 1## naturalPowMod (NS 0##) _ _ = NS 0## naturalPowMod (NS 1##) _ _ = NS 1## naturalPowMod (NS b) (NS e) (NS m) = NS (powModWord# b e m) naturalPowMod b e (NS m) = NS (bigNatPowModWord# (naturalToBigNat# b) (naturalToBigNat# e) m) naturalPowMod b e (NB m) = naturalFromBigNat# (bigNatPowMod (naturalToBigNat# b) (naturalToBigNat# e) m) -- | Compute the number of digits of the Natural in the given base. -- -- `base` must be > 1 naturalSizeInBase# :: Word# -> Natural -> Word# {-# NOINLINE naturalSizeInBase# #-} naturalSizeInBase# base (NS w) = wordSizeInBase# base w naturalSizeInBase# base (NB n) = bigNatSizeInBase# base n -- | Write a 'Natural' to @/addr/@ in base-256 representation and return the -- number of bytes written. -- -- The endianness is selected with the Bool# parameter: write most significant -- byte first (big-endian) if @1#@ or least significant byte first -- (little-endian) if @0#@. naturalToAddr# :: Natural -> Addr# -> Bool# -> State# s -> (# State# s, Word# #) naturalToAddr# (NS i) = wordToAddr# i naturalToAddr# (NB n) = bigNatToAddr# n -- | Write a 'Natural' to @/addr/@ in base-256 representation and return the -- number of bytes written. -- -- The endianness is selected with the Bool# parameter: write most significant -- byte first (big-endian) if @1#@ or least significant byte first -- (little-endian) if @0#@. naturalToAddr :: Natural -> Addr# -> Bool# -> IO Word naturalToAddr a addr e = IO \s -> case naturalToAddr# a addr e s of (# s', w #) -> (# s', W# w #) -- | Read a Natural in base-256 representation from an Addr#. -- -- The size is given in bytes. -- -- The endianness is selected with the Bool# parameter: most significant -- byte first (big-endian) if @1#@ or least significant byte first -- (little-endian) if @0#@. -- -- Null higher limbs are automatically trimed. naturalFromAddr# :: Word# -> Addr# -> Bool# -> State# s -> (# State# s, Natural #) naturalFromAddr# sz addr e s = case bigNatFromAddr# sz addr e s of (# s', n #) -> (# s', naturalFromBigNat# n #) -- | Read a Natural in base-256 representation from an Addr#. -- -- The size is given in bytes. -- -- The endianness is selected with the Bool# parameter: most significant -- byte first (big-endian) if @1#@ or least significant byte first -- (little-endian) if @0#@. -- -- Null higher limbs are automatically trimed. naturalFromAddr :: Word# -> Addr# -> Bool# -> IO Natural naturalFromAddr sz addr e = IO (naturalFromAddr# sz addr e) -- | Write a Natural in base-256 representation and return the -- number of bytes written. -- -- The endianness is selected with the Bool# parameter: most significant -- byte first (big-endian) if @1#@ or least significant byte first -- (little-endian) if @0#@. naturalToMutableByteArray# :: Natural -> MutableByteArray# s -> Word# -> Bool# -> State# s -> (# State# s, Word# #) naturalToMutableByteArray# (NS w) = wordToMutableByteArray# w naturalToMutableByteArray# (NB a) = bigNatToMutableByteArray# a -- | Read a Natural in base-256 representation from a ByteArray#. -- -- The size is given in bytes. -- -- The endianness is selected with the Bool# parameter: most significant -- byte first (big-endian) if @1#@ or least significant byte first -- (little-endian) if @0#@. -- -- Null higher limbs are automatically trimed. naturalFromByteArray# :: Word# -> ByteArray# -> Word# -> Bool# -> State# s -> (# State# s, Natural #) naturalFromByteArray# sz ba off e s = case bigNatFromByteArray# sz ba off e s of (# s', a #) -> (# s', naturalFromBigNat# a #) -- See Note [Optimising conversions between numeric types] -- in GHC.Num.Integer {-# RULES "Word# -> Natural -> Word#" forall x. naturalToWord# (NS x) = x "BigNat# -> Natural -> BigNat#" forall x. naturalToBigNat# (naturalFromBigNat# x) = x #-}