{-# LANGUAGE BangPatterns, ScopedTypeVariables #-} {-# LANGUAGE DeriveGeneric #-} -- |An efficient implementation of 'Data.Graph.Inductive.Graph.Graph' -- using big-endian patricia tree (i.e. "Data.IntMap"). -- -- This module provides the following specialised functions to gain -- more performance, using GHC's RULES pragma: -- -- * 'Data.Graph.Inductive.Graph.insNode' -- -- * 'Data.Graph.Inductive.Graph.insEdge' -- -- * 'Data.Graph.Inductive.Graph.gmap' -- -- * 'Data.Graph.Inductive.Graph.nmap' -- -- * 'Data.Graph.Inductive.Graph.emap' -- -- Code is from Hackage `fgl` package version 5.7.0.3 module GHC.Data.Graph.Inductive.PatriciaTree ( Gr , UGr ) where import GHC.Prelude import GHC.Data.Graph.Inductive.Graph import Data.IntMap (IntMap) import qualified Data.IntMap as IM import Data.List (sort) import Data.Maybe (fromMaybe) import Data.Tuple (swap) import qualified Data.IntMap.Strict as IMS import GHC.Generics (Generic) import Data.Bifunctor ---------------------------------------------------------------------- -- GRAPH REPRESENTATION ---------------------------------------------------------------------- newtype Gr a b = Gr (GraphRep a b) deriving (Generic) type GraphRep a b = IntMap (Context' a b) type Context' a b = (IntMap [b], a, IntMap [b]) type UGr = Gr () () ---------------------------------------------------------------------- -- CLASS INSTANCES ---------------------------------------------------------------------- instance (Eq a, Ord b) => Eq (Gr a b) where (Gr g1) == (Gr g2) = fmap sortAdj g1 == fmap sortAdj g2 where sortAdj (p,n,s) = (fmap sort p,n,fmap sort s) instance (Show a, Show b) => Show (Gr a b) where showsPrec d g = showParen (d > 10) $ showString "mkGraph " . shows (labNodes g) . showString " " . shows (labEdges g) instance (Read a, Read b) => Read (Gr a b) where readsPrec p = readParen (p > 10) $ \ r -> do ("mkGraph", s) <- lex r (ns,t) <- reads s (es,u) <- reads t return (mkGraph ns es, u) instance Graph Gr where empty = Gr IM.empty isEmpty (Gr g) = IM.null g match = matchGr mkGraph vs es = insEdges es . Gr . IM.fromList . map (second (\l -> (IM.empty,l,IM.empty))) $ vs labNodes (Gr g) = [ (node, label) | (node, (_, label, _)) <- IM.toList g ] noNodes (Gr g) = IM.size g nodeRange (Gr g) = fromMaybe (error "nodeRange of empty graph") $ liftA2 (,) (ix (IM.minViewWithKey g)) (ix (IM.maxViewWithKey g)) where ix = fmap (fst . fst) labEdges (Gr g) = do (node, (_, _, s)) <- IM.toList g (next, labels) <- IM.toList s label <- labels return (node, next, label) instance DynGraph Gr where (p, v, l, s) & (Gr g) = let !g1 = IM.insert v (preds, l, succs) g !(np, preds) = fromAdjCounting p !(ns, succs) = fromAdjCounting s !g2 = addSucc g1 v np preds !g3 = addPred g2 v ns succs in Gr g3 instance Functor (Gr a) where fmap = fastEMap instance Bifunctor Gr where bimap = fastNEMap first = fastNMap second = fastEMap matchGr :: Node -> Gr a b -> Decomp Gr a b matchGr node (Gr g) = case IM.lookup node g of Nothing -> (Nothing, Gr g) Just (p, label, s) -> let !g1 = IM.delete node g !p' = IM.delete node p !s' = IM.delete node s !g2 = clearPred g1 node s' !g3 = clearSucc g2 node p' in (Just (toAdj p', node, label, toAdj s), Gr g3) ---------------------------------------------------------------------- -- OVERRIDING FUNCTIONS ---------------------------------------------------------------------- {- {- RULES "insNode/Data.Graph.Inductive.PatriciaTree" insNode = fastInsNode -} fastInsNode :: LNode a -> Gr a b -> Gr a b fastInsNode (v, l) (Gr g) = g' `seq` Gr g' where g' = IM.insert v (IM.empty, l, IM.empty) g -} {-# RULES "insEdge/GHC.Data.Graph.Inductive.PatriciaTree" insEdge = fastInsEdge #-} fastInsEdge :: LEdge b -> Gr a b -> Gr a b fastInsEdge (v, w, l) (Gr g) = g2 `seq` Gr g2 where g1 = IM.adjust addS' v g g2 = IM.adjust addP' w g1 addS' (ps, l', ss) = (ps, l', IM.insertWith addLists w [l] ss) addP' (ps, l', ss) = (IM.insertWith addLists v [l] ps, l', ss) {- {- RULES "gmap/Data.Graph.Inductive.PatriciaTree" gmap = fastGMap -} fastGMap :: forall a b c d. (Context a b -> Context c d) -> Gr a b -> Gr c d fastGMap f (Gr g) = Gr (IM.mapWithKey f' g) where f' :: Node -> Context' a b -> Context' c d f' = ((fromContext . f) .) . toContext {- RULES "nmap/Data.Graph.Inductive.PatriciaTree" nmap = fastNMap -} -} fastNMap :: forall a b c. (a -> c) -> Gr a b -> Gr c b fastNMap f (Gr g) = Gr (IM.map f' g) where f' :: Context' a b -> Context' c b f' (ps, a, ss) = (ps, f a, ss) {- {- RULES "emap/GHC.Data.Graph.Inductive.PatriciaTree" emap = fastEMap -} -} fastEMap :: forall a b c. (b -> c) -> Gr a b -> Gr a c fastEMap f (Gr g) = Gr (IM.map f' g) where f' :: Context' a b -> Context' a c f' (ps, a, ss) = (IM.map (map f) ps, a, IM.map (map f) ss) {- RULES "nemap/GHC.Data.Graph.Inductive.PatriciaTree" nemap = fastNEMap -} fastNEMap :: forall a b c d. (a -> c) -> (b -> d) -> Gr a b -> Gr c d fastNEMap fn fe (Gr g) = Gr (IM.map f g) where f :: Context' a b -> Context' c d f (ps, a, ss) = (IM.map (map fe) ps, fn a, IM.map (map fe) ss) ---------------------------------------------------------------------- -- UTILITIES ---------------------------------------------------------------------- toAdj :: IntMap [b] -> Adj b toAdj = concatMap expand . IM.toList where expand (n,ls) = map (flip (,) n) ls --fromAdj :: Adj b -> IntMap [b] --fromAdj = IM.fromListWith addLists . map (second (:[]) . swap) data FromListCounting a = FromListCounting !Int !(IntMap a) deriving (Eq, Show, Read) getFromListCounting :: FromListCounting a -> (Int, IntMap a) getFromListCounting (FromListCounting i m) = (i, m) {-# INLINE getFromListCounting #-} fromListWithKeyCounting :: (Int -> a -> a -> a) -> [(Int, a)] -> (Int, IntMap a) fromListWithKeyCounting f = getFromListCounting . foldl' ins (FromListCounting 0 IM.empty) where ins (FromListCounting i t) (k,x) = FromListCounting (i + 1) (IM.insertWithKey f k x t) {-# INLINE fromListWithKeyCounting #-} fromListWithCounting :: (a -> a -> a) -> [(Int, a)] -> (Int, IntMap a) fromListWithCounting f = fromListWithKeyCounting (\_ x y -> f x y) {-# INLINE fromListWithCounting #-} fromAdjCounting :: Adj b -> (Int, IntMap [b]) fromAdjCounting = fromListWithCounting addLists . map (second (:[]) . swap) -- We use differenceWith to modify a graph more than bulkThreshold times, -- and repeated insertWith otherwise. bulkThreshold :: Int bulkThreshold = 5 --toContext :: Node -> Context' a b -> Context a b --toContext v (ps, a, ss) = (toAdj ps, v, a, toAdj ss) --fromContext :: Context a b -> Context' a b --fromContext (ps, _, a, ss) = (fromAdj ps, a, fromAdj ss) -- A version of @++@ where order isn't important, so @xs ++ [x]@ -- becomes @x:xs@. Used when we have to have a function of type @[a] -- -> [a] -> [a]@ but one of the lists is just going to be a single -- element (and it isn't possible to tell which). addLists :: [a] -> [a] -> [a] addLists [a] as = a : as addLists as [a] = a : as addLists xs ys = xs ++ ys addSucc :: forall a b . GraphRep a b -> Node -> Int -> IM.IntMap [b] -> GraphRep a b addSucc g0 v numAdd xs | numAdd < bulkThreshold = foldlWithKey' go g0 xs where go :: GraphRep a b -> Node -> [b] -> GraphRep a b go g p l = IMS.adjust f p g where f (ps, l', ss) = let !ss' = IM.insertWith addLists v l ss in (ps, l', ss') addSucc g v _ xs = IMS.differenceWith go g xs where go :: Context' a b -> [b] -> Maybe (Context' a b) go (ps, l', ss) l = let !ss' = IM.insertWith addLists v l ss in Just (ps, l', ss') foldlWithKey' :: (a -> IM.Key -> b -> a) -> a -> IntMap b -> a foldlWithKey' = IM.foldlWithKey' addPred :: forall a b . GraphRep a b -> Node -> Int -> IM.IntMap [b] -> GraphRep a b addPred g0 v numAdd xs | numAdd < bulkThreshold = foldlWithKey' go g0 xs where go :: GraphRep a b -> Node -> [b] -> GraphRep a b go g p l = IMS.adjust f p g where f (ps, l', ss) = let !ps' = IM.insertWith addLists v l ps in (ps', l', ss) addPred g v _ xs = IMS.differenceWith go g xs where go :: Context' a b -> [b] -> Maybe (Context' a b) go (ps, l', ss) l = let !ps' = IM.insertWith addLists v l ps in Just (ps', l', ss) clearSucc :: forall a b x . GraphRep a b -> Node -> IM.IntMap x -> GraphRep a b clearSucc g v = IMS.differenceWith go g where go :: Context' a b -> x -> Maybe (Context' a b) go (ps, l, ss) _ = let !ss' = IM.delete v ss in Just (ps, l, ss') clearPred :: forall a b x . GraphRep a b -> Node -> IM.IntMap x -> GraphRep a b clearPred g v = IMS.differenceWith go g where go :: Context' a b -> x -> Maybe (Context' a b) go (ps, l, ss) _ = let !ps' = IM.delete v ps in Just (ps', l, ss) {----------------------------------------------------------------- Copyright (c) 1999-2008, Martin Erwig 2010, Ivan Lazar Miljenovic 2022, Norman Ramsey All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ----------------------------------------------------------------}